
How do you use angle sum identity to find the exact value of $ \cos 105 $ ?
Answer
542.4k+ views
Hint: In order to find the exact value of $ \cos 105 $ , we will use the angle sum property, $ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $ and we will write $ 105 $ in terms of $ 0,\,30,\,45,\,60,\,90 $ for easy substitution of ratios from the trigonometric table. Then, we will evaluate to determine the value of $ \cos 105 $ .
Complete step-by-step answer:
We need to use angle sum identity to determine the exact value of $ \cos 105 $ .
Now, we can rewrite $ \cos 105 $ as $ \cos \left( {60 + 45} \right) $ ,
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
Hence, by applying the values in the angle sum identity, we have,
$ \cos \left( {60 + 45} \right) = \cos 60\cos 45 - \sin 60\sin 45 $
From trigonometric ratios, we know that
$ \cos 60 = \dfrac{1}{2} $
$ \cos 45 = \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2} $
$ \sin 60 = \dfrac{{\sqrt 3 }}{2} $
$ \sin 45 = \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2} $
Therefore, let us apply the value of trigonometric ratios, we have,
$ \cos \left( {60 + 45} \right) = \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{{\sqrt 2 }}{2}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \left( {\dfrac{{\sqrt 2 }}{2}} \right) $
$ \cos \left( {60 + 45} \right) = \left( {\dfrac{{\sqrt 2 }}{4}} \right) - \left( {\dfrac{{\sqrt 6 }}{4}} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{1}{4}\left( {\sqrt 2 - \sqrt 6 } \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{1}{4}\left( {\sqrt 2 - \sqrt 3 \times \sqrt 2 } \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{\sqrt 2 }}{4}\left( {1 - \sqrt 3 } \right) $
The value of $ \sqrt 2 = 1.414 $ and $ \sqrt 3 = 1.732 $
Now, by applying the values, we have,
$ \cos \left( {60 + 45} \right) = \dfrac{{1.414}}{4}\left( {1 - 1.732} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{1.414}}{4}\left( { - 0.732} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{ - 1.035}}{4} $
$ \cos \left( {60 + 45} \right) = - 0.258 $
Hence, the exact value of $ \cos 105 $ is $ - 0.258 $ .
So, the correct answer is “ $ - 0.258 $ ”.
Note: Three basic trigonometric identities involve the sums of angles. The functions involved in these identities are sine, cosine and tangent. We can use the angle sum identities to determine the function values of any angles. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
The angle sum identities are
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
$ \cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b $
$ \sin \left( {a + b} \right) = \cos a\sin b + \sin a\cos b $
$ \sin \left( {a - b} \right) = \cos a\sin b - \sin a\cos b $
$ \tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}} $
$ \tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} $
Complete step-by-step answer:
We need to use angle sum identity to determine the exact value of $ \cos 105 $ .
Now, we can rewrite $ \cos 105 $ as $ \cos \left( {60 + 45} \right) $ ,
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
Hence, by applying the values in the angle sum identity, we have,
$ \cos \left( {60 + 45} \right) = \cos 60\cos 45 - \sin 60\sin 45 $
From trigonometric ratios, we know that
$ \cos 60 = \dfrac{1}{2} $
$ \cos 45 = \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2} $
$ \sin 60 = \dfrac{{\sqrt 3 }}{2} $
$ \sin 45 = \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2} $
Therefore, let us apply the value of trigonometric ratios, we have,
$ \cos \left( {60 + 45} \right) = \left( {\dfrac{1}{2}} \right) \times \left( {\dfrac{{\sqrt 2 }}{2}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \left( {\dfrac{{\sqrt 2 }}{2}} \right) $
$ \cos \left( {60 + 45} \right) = \left( {\dfrac{{\sqrt 2 }}{4}} \right) - \left( {\dfrac{{\sqrt 6 }}{4}} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{1}{4}\left( {\sqrt 2 - \sqrt 6 } \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{1}{4}\left( {\sqrt 2 - \sqrt 3 \times \sqrt 2 } \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{\sqrt 2 }}{4}\left( {1 - \sqrt 3 } \right) $
The value of $ \sqrt 2 = 1.414 $ and $ \sqrt 3 = 1.732 $
Now, by applying the values, we have,
$ \cos \left( {60 + 45} \right) = \dfrac{{1.414}}{4}\left( {1 - 1.732} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{1.414}}{4}\left( { - 0.732} \right) $
$ \cos \left( {60 + 45} \right) = \dfrac{{ - 1.035}}{4} $
$ \cos \left( {60 + 45} \right) = - 0.258 $
Hence, the exact value of $ \cos 105 $ is $ - 0.258 $ .
So, the correct answer is “ $ - 0.258 $ ”.
Note: Three basic trigonometric identities involve the sums of angles. The functions involved in these identities are sine, cosine and tangent. We can use the angle sum identities to determine the function values of any angles. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
The angle sum identities are
$ \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b $
$ \cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b $
$ \sin \left( {a + b} \right) = \cos a\sin b + \sin a\cos b $
$ \sin \left( {a - b} \right) = \cos a\sin b - \sin a\cos b $
$ \tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}} $
$ \tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} $
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

