Answer
Verified
485.4k+ views
Hint:- Use the formula that $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ . Also, the value of $|\overrightarrow{a}|$ is 1, provided $\overrightarrow{a}$ is a unit vector.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it