
Two tangents to a parabola $ {{y}^{2}}=4ax $ meet at an angle of $ {{45}^{\circ }} $ . Prove that the locus of their point of intersection is the curve $ {{y}^{2}}-4ax={{\left( x+a \right)}^{2}} $ . \[\]
Answer
567.3k+ views
Hint: We take the point of intersection of tangents at one instance as $ \left( h,k \right) $ . We use the general equation of the parabola $ {{y}^{2}}=4ax $ that is $ y=mx+\dfrac{a}{m} $ and put $ \left( h,k \right) $ to get quadratic equation in $ m $ . The roots of the quadratic equation will be the slopes of intersecting tangents $ {{m}_{1}},{{m}_{2}} $ . We use formula for angle $ \theta $ between two lines $ \tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} $ and put $ \theta ={{45}^{\circ }} $ and simplify. We replace $ \left( h,k \right) $ by $ \left( x,y \right) $ to get the locus. \[\]
Complete step by step answer:
We are given the equation of parabola opened towards right as
\[{{y}^{2}}=4ax......\left( 1 \right)\]
We know that the equation of any tangent to parabola (1) is given by
\[y=mx+\dfrac{a}{m}.......\left( 2 \right)\]
Let $ \left( h,k \right) $ be the coordinates of the point of intersection of the tangents meeting at $ {{45}^{\circ }} $ angle as given in the question. Since $ \left( h,k \right) $ lies on the tangent line (2) we have;
\[\begin{align}
& k=mh+\dfrac{a}{m} \\
& \Rightarrow h{{m}^{2}}-km+a=0 \\
\end{align}\]
The roots of the above equation say $ {{m}_{1}},{{m}_{2}} $ will be the slopes of intersecting tangents. We use the sum of the roots formula and have;
\[{{m}_{1}}+{{m}_{2}}=\dfrac{-\left( -k \right)}{h}=\dfrac{k}{h}\]
We use product of the roots formula and have;
\[{{m}_{1}}{{m}_{2}}=\dfrac{a}{h}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ for $ a={{m}_{1}},b={{m}_{2}} $ to have;
\[\begin{align}
& {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}={{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}-4{{m}_{1}}{{m}_{2}} \\
& \Rightarrow {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}={{\left( \dfrac{k}{h} \right)}^{2}}-4\left( \dfrac{a}{h} \right) \\
& \Rightarrow {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}=\dfrac{{{k}^{2}}-4ah}{{{h}^{2}}} \\
& \Rightarrow {{m}_{1}}-{{m}_{2}}=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h} \\
\end{align}\]
We know that the angles between two lines $ \theta $ with slopes $ {{m}_{1}},{{m}_{2}} $ is obtained from the equation
\[\tan \theta =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}\]
We put the given $ \theta ={{45}^{\circ }} $ an previously obtained $ {{m}_{1}}{{m}_{2}}=\dfrac{a}{h},{{m}_{1}}-{{m}_{2}}=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h} $ to have;
\[\begin{align}
& \tan {{45}^{\circ }}=\dfrac{\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h}}{1+\dfrac{a}{h}} \\
& \Rightarrow 1=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h+a} \\
\end{align}\]
We square both side to have;
\[\begin{align}
& \Rightarrow 1=\dfrac{{{k}^{2}}-4ah}{{{\left( h+a \right)}^{2}}} \\
& \Rightarrow {{k}^{2}}-4ah={{\left( h+a \right)}^{2}} \\
\end{align}\]
We replace $ \left( h,k \right) $ by $ \left( x,y \right) $ to represent all such points of intersection of tangents $ y={{m}_{1}}x+\dfrac{a}{{{m}_{1}}},y={{m}_{2}}x+\dfrac{a}{{{m}_{2}}} $ as the locus
\[{{y}^{2}}-4ax={{\left( x+a \right)}^{2}}\]
Hence the given statement is proved. \[\]
Note:
We note that the angle $ \theta ={{\tan }^{-1}}\left( \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right) $ may be acute or obtuse. Since two lines form two pairs of equal opposite angles they will be of measure $ \theta ,{{180}^{\circ }}-\theta $ . We can alternatively solve using parametric points of contact $ \left( at_{1}^{2},2a{{t}_{1}} \right),\left( at_{2}^{2},2a{{t}_{2}} \right) $ of the tangents $ {{t}_{1}}y=x+at_{1}^{2},{{t}_{2}}y=x+at_{2}^{2} $ where the point of intersection is given by $ \left( h,k \right)=\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right) $ . We can find $ {{t}_{1}}{{t}_{2}},{{t}_{1}}+{{t}_{2}} $ using the formula for angle between lines to have $ \tan \theta =\dfrac{{{t}_{1}}-{{t}_{2}}}{1+{{t}_{1}}{{t}_{2}}} $ and then eliminate $ {{t}_{1}},{{t}_{2}} $ to get the equation in $ h,k $ .
Complete step by step answer:
We are given the equation of parabola opened towards right as
\[{{y}^{2}}=4ax......\left( 1 \right)\]
We know that the equation of any tangent to parabola (1) is given by
\[y=mx+\dfrac{a}{m}.......\left( 2 \right)\]
Let $ \left( h,k \right) $ be the coordinates of the point of intersection of the tangents meeting at $ {{45}^{\circ }} $ angle as given in the question. Since $ \left( h,k \right) $ lies on the tangent line (2) we have;
\[\begin{align}
& k=mh+\dfrac{a}{m} \\
& \Rightarrow h{{m}^{2}}-km+a=0 \\
\end{align}\]
The roots of the above equation say $ {{m}_{1}},{{m}_{2}} $ will be the slopes of intersecting tangents. We use the sum of the roots formula and have;
\[{{m}_{1}}+{{m}_{2}}=\dfrac{-\left( -k \right)}{h}=\dfrac{k}{h}\]
We use product of the roots formula and have;
\[{{m}_{1}}{{m}_{2}}=\dfrac{a}{h}\]
We use the algebraic identity $ {{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab $ for $ a={{m}_{1}},b={{m}_{2}} $ to have;
\[\begin{align}
& {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}={{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}-4{{m}_{1}}{{m}_{2}} \\
& \Rightarrow {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}={{\left( \dfrac{k}{h} \right)}^{2}}-4\left( \dfrac{a}{h} \right) \\
& \Rightarrow {{\left( {{m}_{1}}-{{m}_{2}} \right)}^{2}}=\dfrac{{{k}^{2}}-4ah}{{{h}^{2}}} \\
& \Rightarrow {{m}_{1}}-{{m}_{2}}=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h} \\
\end{align}\]
We know that the angles between two lines $ \theta $ with slopes $ {{m}_{1}},{{m}_{2}} $ is obtained from the equation
\[\tan \theta =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}\]
We put the given $ \theta ={{45}^{\circ }} $ an previously obtained $ {{m}_{1}}{{m}_{2}}=\dfrac{a}{h},{{m}_{1}}-{{m}_{2}}=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h} $ to have;
\[\begin{align}
& \tan {{45}^{\circ }}=\dfrac{\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h}}{1+\dfrac{a}{h}} \\
& \Rightarrow 1=\pm \dfrac{\sqrt{{{k}^{2}}-4ah}}{h+a} \\
\end{align}\]
We square both side to have;
\[\begin{align}
& \Rightarrow 1=\dfrac{{{k}^{2}}-4ah}{{{\left( h+a \right)}^{2}}} \\
& \Rightarrow {{k}^{2}}-4ah={{\left( h+a \right)}^{2}} \\
\end{align}\]
We replace $ \left( h,k \right) $ by $ \left( x,y \right) $ to represent all such points of intersection of tangents $ y={{m}_{1}}x+\dfrac{a}{{{m}_{1}}},y={{m}_{2}}x+\dfrac{a}{{{m}_{2}}} $ as the locus
\[{{y}^{2}}-4ax={{\left( x+a \right)}^{2}}\]
Hence the given statement is proved. \[\]
Note:
We note that the angle $ \theta ={{\tan }^{-1}}\left( \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right) $ may be acute or obtuse. Since two lines form two pairs of equal opposite angles they will be of measure $ \theta ,{{180}^{\circ }}-\theta $ . We can alternatively solve using parametric points of contact $ \left( at_{1}^{2},2a{{t}_{1}} \right),\left( at_{2}^{2},2a{{t}_{2}} \right) $ of the tangents $ {{t}_{1}}y=x+at_{1}^{2},{{t}_{2}}y=x+at_{2}^{2} $ where the point of intersection is given by $ \left( h,k \right)=\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right) $ . We can find $ {{t}_{1}}{{t}_{2}},{{t}_{1}}+{{t}_{2}} $ using the formula for angle between lines to have $ \tan \theta =\dfrac{{{t}_{1}}-{{t}_{2}}}{1+{{t}_{1}}{{t}_{2}}} $ and then eliminate $ {{t}_{1}},{{t}_{2}} $ to get the equation in $ h,k $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

