
Two stones are thrown simultaneously from the same point with equal speed \[{{V}_{0}}\]at an angle \[30{}^\circ \] and \[60{}^\circ \] respectively with the positive axis. The velocity with which the stones move relative to each other in air is.
\[A)2{{v}_{0}}\cos 15{}^\circ \]
\[B)2{{v}_{0}}\sin 15{}^\circ \]
\[\text{C)2}{{\text{v}}_{\text{0}}}\text{tan15 }\!\!{}^\circ\!\!\text{ }\]
\[\text{D)2}{{\text{v}}_{\text{0}}}\text{cot15 }\!\!{}^\circ\!\!\text{ }\]
Answer
560.7k+ views
Hint: Here, two stones are thrown at different angles. The stones are moving in the same direction. Then, the relative velocity is the difference of the velocities of stone 1 and 2. This resultant velocity can be calculated by finding the x component of both stones velocity, and y component of both stones velocity. And then using the x and y component of the resultant velocity, we can find its magnitude.
Formula used:
\[{{v}_{x}}=v\text{ cos}\theta \]
\[{{v}_{y}}=v\text{ sin}\theta \]
\[\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}\]
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B\]
\[\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B\]
\[\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)\]
Complete answer:
Given,
Stone 1 is thrown at an angle of\[30{}^\circ \], with velocity\[{{v}_{0}}\]. Then,
X-axis component of the velocity is,\[{{\left( {{v}_{x}} \right)}_{1}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 30{}^\circ \]
Y-axis component of the velocity is,\[{{\left( {{v}_{y}} \right)}_{1}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 30{}^\circ \]
Stone 2 is thrown at an angle of \[60{}^\circ \], with velocity\[{{v}_{0}}\] Then,
X-axis component of the velocity is, \[{{\left( {{v}_{x}} \right)}_{2}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 60{}^\circ \]
Y-axis component of the velocity is, \[{{\left( {{v}_{y}} \right)}_{2}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 60{}^\circ \]
Since the two stones move in the same direction, the relative velocity is the difference of the two velocities.
Then,
Relative velocity of two stones with respect to x axis,
\[{{\left( \text{Relative velocity} \right)}_{x}}\text{ = }{{\text{v}}_{0}}\cos 60-{{\text{v}}_{0}}\cos 30={{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)\]
Relative velocity of two stones with respect to y axis,
\[{{\left( \text{Relative velocity} \right)}_{y}}\text{ = }{{\text{v}}_{0}}\sin 60-{{\text{v}}_{0}}\sin 30={{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)\]
Then,
Resultant relative velocity,
\[{{\left( Velocity \right)}_{\text{resultant}}}\text{= }{{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)+{{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)\]
We have,
Magnitude of a vector \[\vec{v}\] is given by,
\[\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}\]
Where,
\[{{v}_{x}}=v\text{ cos}\theta \], \[{{v}_{y}}=v\text{ sin}\theta \] and, \[\theta \]is the angle between \[{{\text{v}}_{\text{x}}}\text{ and v}\]
Then,
\[\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|=\sqrt{{{v}_{0}}^{2}{{\left( \cos 60-\cos 30 \right)}^{2}}+{{v}_{0}}^{2}{{\left( \sin 60-\sin 30 \right)}^{2}}}\]
\[={{v}_{0}}\sqrt{\text{co}{{\text{s}}^{\text{2}}}\text{60+si}{{\text{n}}^{\text{2}}}\text{60+co}{{\text{s}}^{\text{2}}}\text{30+si}{{\text{n}}^{\text{2}}}\text{30-2cos60cos30-2sin60sin30}}\]
We have,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\],
\[\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B\]
\[\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B\]
Then,
\[\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|={{v}_{0}}\sqrt{1+1-2\left( \cos \left( 60-30 \right) \right)}={{v}_{0}}\sqrt{2-2\cos 30}\]
\[={{v}_{0}}\sqrt{2\left( 1-\cos 30 \right)}\]
\[={{v}_{0}}\sqrt{2\times 2{{\sin }^{2}}15}\] \[\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)\]
\[={{v}_{0}}\sqrt{4{{\sin }^{2}}15}\]
\[=2{{v}_{0}}\sin 15{}^\circ \]
Therefore, the velocity with which the stones move relative to each other in air is \[2{{v}_{0}}\sin 15{}^\circ \]
Answer is option B.
Note:
The velocity of a body with respect to the velocity of another body is known as the relative velocity of the first body with respect to the second.
If \[{{V}_{A}}\] and \[{{V}_{B}}\] represent the velocities of two bodies A and B respectively, then the relative velocity of A with respect to B is represented by \[{{V}_{AB}}\].Similarly, the relative velocity of B with respect to A is represented by \[{{V}_{BA}}\].
If the two objects are moving in the same direction, the relative velocity is given by,
\[{{V}_{AB}}={{V}_{A}}-{{V}_{B}}\], \[{{V}_{BA}}={{V}_{B}}-{{V}_{A}}\]
And if the two objects are moving in the opposite direction, then their relative velocity is given by,
\[{{V}_{AB}}={{V}_{BA}}={{V}_{A}}+{{V}_{B}}\]
Formula used:
\[{{v}_{x}}=v\text{ cos}\theta \]
\[{{v}_{y}}=v\text{ sin}\theta \]
\[\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}\]
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B\]
\[\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B\]
\[\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)\]
Complete answer:
Given,
Stone 1 is thrown at an angle of\[30{}^\circ \], with velocity\[{{v}_{0}}\]. Then,
X-axis component of the velocity is,\[{{\left( {{v}_{x}} \right)}_{1}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 30{}^\circ \]
Y-axis component of the velocity is,\[{{\left( {{v}_{y}} \right)}_{1}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 30{}^\circ \]
Stone 2 is thrown at an angle of \[60{}^\circ \], with velocity\[{{v}_{0}}\] Then,
X-axis component of the velocity is, \[{{\left( {{v}_{x}} \right)}_{2}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 60{}^\circ \]
Y-axis component of the velocity is, \[{{\left( {{v}_{y}} \right)}_{2}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 60{}^\circ \]
Since the two stones move in the same direction, the relative velocity is the difference of the two velocities.
Then,
Relative velocity of two stones with respect to x axis,
\[{{\left( \text{Relative velocity} \right)}_{x}}\text{ = }{{\text{v}}_{0}}\cos 60-{{\text{v}}_{0}}\cos 30={{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)\]
Relative velocity of two stones with respect to y axis,
\[{{\left( \text{Relative velocity} \right)}_{y}}\text{ = }{{\text{v}}_{0}}\sin 60-{{\text{v}}_{0}}\sin 30={{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)\]
Then,
Resultant relative velocity,
\[{{\left( Velocity \right)}_{\text{resultant}}}\text{= }{{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)+{{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)\]
We have,
Magnitude of a vector \[\vec{v}\] is given by,
\[\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}\]
Where,
\[{{v}_{x}}=v\text{ cos}\theta \], \[{{v}_{y}}=v\text{ sin}\theta \] and, \[\theta \]is the angle between \[{{\text{v}}_{\text{x}}}\text{ and v}\]
Then,
\[\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|=\sqrt{{{v}_{0}}^{2}{{\left( \cos 60-\cos 30 \right)}^{2}}+{{v}_{0}}^{2}{{\left( \sin 60-\sin 30 \right)}^{2}}}\]
\[={{v}_{0}}\sqrt{\text{co}{{\text{s}}^{\text{2}}}\text{60+si}{{\text{n}}^{\text{2}}}\text{60+co}{{\text{s}}^{\text{2}}}\text{30+si}{{\text{n}}^{\text{2}}}\text{30-2cos60cos30-2sin60sin30}}\]
We have,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\],
\[\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B\]
\[\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B\]
Then,
\[\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|={{v}_{0}}\sqrt{1+1-2\left( \cos \left( 60-30 \right) \right)}={{v}_{0}}\sqrt{2-2\cos 30}\]
\[={{v}_{0}}\sqrt{2\left( 1-\cos 30 \right)}\]
\[={{v}_{0}}\sqrt{2\times 2{{\sin }^{2}}15}\] \[\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)\]
\[={{v}_{0}}\sqrt{4{{\sin }^{2}}15}\]
\[=2{{v}_{0}}\sin 15{}^\circ \]
Therefore, the velocity with which the stones move relative to each other in air is \[2{{v}_{0}}\sin 15{}^\circ \]
Answer is option B.
Note:
The velocity of a body with respect to the velocity of another body is known as the relative velocity of the first body with respect to the second.
If \[{{V}_{A}}\] and \[{{V}_{B}}\] represent the velocities of two bodies A and B respectively, then the relative velocity of A with respect to B is represented by \[{{V}_{AB}}\].Similarly, the relative velocity of B with respect to A is represented by \[{{V}_{BA}}\].
If the two objects are moving in the same direction, the relative velocity is given by,
\[{{V}_{AB}}={{V}_{A}}-{{V}_{B}}\], \[{{V}_{BA}}={{V}_{B}}-{{V}_{A}}\]
And if the two objects are moving in the opposite direction, then their relative velocity is given by,
\[{{V}_{AB}}={{V}_{BA}}={{V}_{A}}+{{V}_{B}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

