
Two solids dissociates as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$; ${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,{\text{x}}\,\,{\text{at}}{{\text{m}}^{\text{2}}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$; ${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,{\text{y}}\,\,{\text{at}}{{\text{m}}^{\text{2}}}$
The total pressure when both the solids dissociates simultaneously is:
A. $\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}\,} {\text{atm}}$
B.$2(\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}\,} {\text{)atm}}$
C. $\,{\text{(x + }}\,{\text{y)}}\,{\text{atm}}$
D. ${{\text{x}}^2}{\text{ + }}\,{{\text{y}}^{2\,}}{\text{atm}}$
Answer
551.4k+ views
Hint:We have to determine the pressure in terms of equilibrium constant x and y. So, we have to determine the relation between x and y and pressures. To determine the answer we will write the equilibrium equation with pressure. Then we will determine the relation between pressure and equilibrium constant. Both solid decompose simultaneously, so we will add the pressure of each to determine the total pressure.
Complete solution:
The given reactions are as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$
At equilibrium the reaction will be represented as follows:
${\text{A(s)}}\,\, \rightleftharpoons {\text{B(g)}}\, + \,{\text{C(g)}}$
${\text{D(s)}}\,\, \rightleftharpoons {\text{C(g)}}\, + \,{\text{E(g)}}$
We assume that initial pressure of the A is ${{\text{P}}_{\text{1}}}$ and initial pressure of B and C will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1}} {\text{(g)}}$
Similarly, we assume that initial pressure of the A is ${{\text{P}}_2}$ and initial pressure of C and D will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
When both solids decompose simultaneously, as the product C is common in both reaction so, he pressure of C will be sum of both pressure so, at simultaneously decomposition,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
Now, we will write the equilibrium expression for both the reaction as follows:
For $\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$,
${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,\left[ {\text{B}} \right]\left[ {\text{C}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p1}}}}$value,
${\text{x}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]$…..$(1)$
For \[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\],
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {\text{C}} \right]\left[ {\text{E}} \right]$
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_{\text{2}}}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p2}}}}$value,
${\text{y}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$…..$(2)$
We will determine the total value of equilibrium constant or the relation between x and y and pressure by adding the equation$(1)$ and $(2)$.
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right]\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right]\left[ {{\text{P}}_2^2} \right]$
\[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right] + 2\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \left[ {{\text{P}}_2^2} \right]\]
As we know, \[{\left( {{\text{a}}\,\,{\text{ + }}\,{\text{b}}} \right)^{\text{2}}}\,\,{\text{ = }}\,\left[ {{{\text{a}}^{\text{2}}}} \right]{\text{ + 2}}\left[ {{\text{ab}}} \right]{\text{ + }}\left[ {{{\text{b}}^{\text{2}}}} \right]\]
So, \[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,{\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]^2}\]
\[\sqrt {{\text{x}}\,\, + \,{\text{y}}} \,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]….$(3)$
Now the total pressure is the sum of pressure of B, C and D. so,
${{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_{\text{B}}}\,{\text{ + }}{{\text{P}}_{\text{C}}}\,{\text{ + }}\,{{\text{P}}_{\text{D}}}$
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_1}\,{\text{ + }}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right){\text{ + }}\,{{\text{P}}_2}\]
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right)\]….\[(4)\]
On substituting the value of \[\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]from equation \[(3)\] in equation\[(4)\],
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \]
So, the total pressure when both the solids dissociates simultaneously is \[{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \].
Therefore, option (B) is correct.
Note: The pressure of A and D are not included in the equilibrium constant expression. The pressure or concentration of solid is considered as one because solid decomposes very small. As C is a common product, we add the pressure for both C. we can write the pressure of C as ${\text{2P}}$ because C is formed from different reactants and both the reactants have different initial pressures.
Complete solution:
The given reactions are as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$
At equilibrium the reaction will be represented as follows:
${\text{A(s)}}\,\, \rightleftharpoons {\text{B(g)}}\, + \,{\text{C(g)}}$
${\text{D(s)}}\,\, \rightleftharpoons {\text{C(g)}}\, + \,{\text{E(g)}}$
We assume that initial pressure of the A is ${{\text{P}}_{\text{1}}}$ and initial pressure of B and C will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1}} {\text{(g)}}$
Similarly, we assume that initial pressure of the A is ${{\text{P}}_2}$ and initial pressure of C and D will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
When both solids decompose simultaneously, as the product C is common in both reaction so, he pressure of C will be sum of both pressure so, at simultaneously decomposition,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
Now, we will write the equilibrium expression for both the reaction as follows:
For $\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$,
${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,\left[ {\text{B}} \right]\left[ {\text{C}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p1}}}}$value,
${\text{x}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]$…..$(1)$
For \[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\],
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {\text{C}} \right]\left[ {\text{E}} \right]$
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_{\text{2}}}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p2}}}}$value,
${\text{y}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$…..$(2)$
We will determine the total value of equilibrium constant or the relation between x and y and pressure by adding the equation$(1)$ and $(2)$.
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right]\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right]\left[ {{\text{P}}_2^2} \right]$
\[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right] + 2\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \left[ {{\text{P}}_2^2} \right]\]
As we know, \[{\left( {{\text{a}}\,\,{\text{ + }}\,{\text{b}}} \right)^{\text{2}}}\,\,{\text{ = }}\,\left[ {{{\text{a}}^{\text{2}}}} \right]{\text{ + 2}}\left[ {{\text{ab}}} \right]{\text{ + }}\left[ {{{\text{b}}^{\text{2}}}} \right]\]
So, \[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,{\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]^2}\]
\[\sqrt {{\text{x}}\,\, + \,{\text{y}}} \,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]….$(3)$
Now the total pressure is the sum of pressure of B, C and D. so,
${{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_{\text{B}}}\,{\text{ + }}{{\text{P}}_{\text{C}}}\,{\text{ + }}\,{{\text{P}}_{\text{D}}}$
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_1}\,{\text{ + }}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right){\text{ + }}\,{{\text{P}}_2}\]
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right)\]….\[(4)\]
On substituting the value of \[\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]from equation \[(3)\] in equation\[(4)\],
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \]
So, the total pressure when both the solids dissociates simultaneously is \[{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \].
Therefore, option (B) is correct.
Note: The pressure of A and D are not included in the equilibrium constant expression. The pressure or concentration of solid is considered as one because solid decomposes very small. As C is a common product, we add the pressure for both C. we can write the pressure of C as ${\text{2P}}$ because C is formed from different reactants and both the reactants have different initial pressures.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

