
Two solids dissociates as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$; ${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,{\text{x}}\,\,{\text{at}}{{\text{m}}^{\text{2}}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$; ${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,{\text{y}}\,\,{\text{at}}{{\text{m}}^{\text{2}}}$
The total pressure when both the solids dissociates simultaneously is:
A. $\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}\,} {\text{atm}}$
B.$2(\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}\,} {\text{)atm}}$
C. $\,{\text{(x + }}\,{\text{y)}}\,{\text{atm}}$
D. ${{\text{x}}^2}{\text{ + }}\,{{\text{y}}^{2\,}}{\text{atm}}$
Answer
562.8k+ views
Hint:We have to determine the pressure in terms of equilibrium constant x and y. So, we have to determine the relation between x and y and pressures. To determine the answer we will write the equilibrium equation with pressure. Then we will determine the relation between pressure and equilibrium constant. Both solid decompose simultaneously, so we will add the pressure of each to determine the total pressure.
Complete solution:
The given reactions are as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$
At equilibrium the reaction will be represented as follows:
${\text{A(s)}}\,\, \rightleftharpoons {\text{B(g)}}\, + \,{\text{C(g)}}$
${\text{D(s)}}\,\, \rightleftharpoons {\text{C(g)}}\, + \,{\text{E(g)}}$
We assume that initial pressure of the A is ${{\text{P}}_{\text{1}}}$ and initial pressure of B and C will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1}} {\text{(g)}}$
Similarly, we assume that initial pressure of the A is ${{\text{P}}_2}$ and initial pressure of C and D will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
When both solids decompose simultaneously, as the product C is common in both reaction so, he pressure of C will be sum of both pressure so, at simultaneously decomposition,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
Now, we will write the equilibrium expression for both the reaction as follows:
For $\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$,
${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,\left[ {\text{B}} \right]\left[ {\text{C}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p1}}}}$value,
${\text{x}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]$…..$(1)$
For \[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\],
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {\text{C}} \right]\left[ {\text{E}} \right]$
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_{\text{2}}}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p2}}}}$value,
${\text{y}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$…..$(2)$
We will determine the total value of equilibrium constant or the relation between x and y and pressure by adding the equation$(1)$ and $(2)$.
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right]\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right]\left[ {{\text{P}}_2^2} \right]$
\[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right] + 2\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \left[ {{\text{P}}_2^2} \right]\]
As we know, \[{\left( {{\text{a}}\,\,{\text{ + }}\,{\text{b}}} \right)^{\text{2}}}\,\,{\text{ = }}\,\left[ {{{\text{a}}^{\text{2}}}} \right]{\text{ + 2}}\left[ {{\text{ab}}} \right]{\text{ + }}\left[ {{{\text{b}}^{\text{2}}}} \right]\]
So, \[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,{\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]^2}\]
\[\sqrt {{\text{x}}\,\, + \,{\text{y}}} \,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]….$(3)$
Now the total pressure is the sum of pressure of B, C and D. so,
${{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_{\text{B}}}\,{\text{ + }}{{\text{P}}_{\text{C}}}\,{\text{ + }}\,{{\text{P}}_{\text{D}}}$
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_1}\,{\text{ + }}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right){\text{ + }}\,{{\text{P}}_2}\]
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right)\]….\[(4)\]
On substituting the value of \[\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]from equation \[(3)\] in equation\[(4)\],
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \]
So, the total pressure when both the solids dissociates simultaneously is \[{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \].
Therefore, option (B) is correct.
Note: The pressure of A and D are not included in the equilibrium constant expression. The pressure or concentration of solid is considered as one because solid decomposes very small. As C is a common product, we add the pressure for both C. we can write the pressure of C as ${\text{2P}}$ because C is formed from different reactants and both the reactants have different initial pressures.
Complete solution:
The given reactions are as follows:
${\text{A(s)}}\,\, \to {\text{B(g)}} + {\text{C(g)}}$
${\text{D(s)}}\,\, \to {\text{C(g) + }}\,{\text{E(g)}}$
At equilibrium the reaction will be represented as follows:
${\text{A(s)}}\,\, \rightleftharpoons {\text{B(g)}}\, + \,{\text{C(g)}}$
${\text{D(s)}}\,\, \rightleftharpoons {\text{C(g)}}\, + \,{\text{E(g)}}$
We assume that initial pressure of the A is ${{\text{P}}_{\text{1}}}$ and initial pressure of B and C will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1}} {\text{(g)}}$
Similarly, we assume that initial pressure of the A is ${{\text{P}}_2}$ and initial pressure of C and D will be zero. At equilibrium all the products and reactant are present in equal amount so, the pressure of all the species will be same so,
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
When both solids decompose simultaneously, as the product C is common in both reaction so, he pressure of C will be sum of both pressure so, at simultaneously decomposition,
$\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$
\[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\]
Now, we will write the equilibrium expression for both the reaction as follows:
For $\mathop {\text{A}}\limits_{{{\text{P}}_1}} {\text{(s)}}\,{\text{ + }}\,\mathop {\text{B}}\limits_{{{\text{P}}_1}} {\text{(g)}}\, \rightleftharpoons \mathop {\text{C}}\limits_{{{\text{P}}_1} + {{\text{P}}_2}} {\text{(g)}}$,
${{\text{K}}_{{\text{p1}}}}\,{\text{ = }}\,\left[ {\text{B}} \right]\left[ {\text{C}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p1}}}}$value,
${\text{x}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]$…..$(1)$
For \[\mathop {\text{D}}\limits_{{{\text{P}}_2}} {\text{(s)}}\,\, \to \mathop {\text{C}}\limits_{{{\text{P}}_1}{\text{ + }}{{\text{P}}_2}} {\text{(g) + }}\,\mathop {\text{E}}\limits_{{{\text{P}}_2}} {\text{(g)}}\],
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {\text{C}} \right]\left[ {\text{E}} \right]$
${{\text{K}}_{{\text{p2}}}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_{\text{2}}}} \right]$
On substituting the pressure and ${{\text{K}}_{{\text{p2}}}}$value,
${\text{y}}\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$…..$(2)$
We will determine the total value of equilibrium constant or the relation between x and y and pressure by adding the equation$(1)$ and $(2)$.
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}} \right]\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\left[ {{{\text{P}}_2}} \right]$
${\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right]\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \,\,\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right]\left[ {{\text{P}}_2^2} \right]$
\[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,\left[ {{\text{P}}_1^2} \right] + 2\left[ {{{\text{P}}_{\text{1}}}{{\text{P}}_{\text{2}}}} \right] + \left[ {{\text{P}}_2^2} \right]\]
As we know, \[{\left( {{\text{a}}\,\,{\text{ + }}\,{\text{b}}} \right)^{\text{2}}}\,\,{\text{ = }}\,\left[ {{{\text{a}}^{\text{2}}}} \right]{\text{ + 2}}\left[ {{\text{ab}}} \right]{\text{ + }}\left[ {{{\text{b}}^{\text{2}}}} \right]\]
So, \[{\text{x}}\,\, + \,{\text{y}}\,\,{\text{ = }}\,{\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]^2}\]
\[\sqrt {{\text{x}}\,\, + \,{\text{y}}} \,\,{\text{ = }}\,\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]….$(3)$
Now the total pressure is the sum of pressure of B, C and D. so,
${{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_{\text{B}}}\,{\text{ + }}{{\text{P}}_{\text{C}}}\,{\text{ + }}\,{{\text{P}}_{\text{D}}}$
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{{\text{P}}_1}\,{\text{ + }}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right){\text{ + }}\,{{\text{P}}_2}\]
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\left( {{{\text{P}}_1}\,{\text{ + }}\,{{\text{P}}_2}} \right)\]….\[(4)\]
On substituting the value of \[\left[ {{{\text{P}}_{\text{1}}}\,{\text{ + }}\,{{\text{P}}_{\text{2}}}} \right]\]from equation \[(3)\] in equation\[(4)\],
\[{{\text{P}}_{{\text{total}}}}\,{\text{ = }}\,{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \]
So, the total pressure when both the solids dissociates simultaneously is \[{\text{2}}\,\sqrt {{\text{x}}\,{\text{ + }}\,{\text{y}}} \].
Therefore, option (B) is correct.
Note: The pressure of A and D are not included in the equilibrium constant expression. The pressure or concentration of solid is considered as one because solid decomposes very small. As C is a common product, we add the pressure for both C. we can write the pressure of C as ${\text{2P}}$ because C is formed from different reactants and both the reactants have different initial pressures.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

