
Two sides of a triangle are 237 and 158 feet and the contained angle is ${{66}^{\circ }}{{40}^{'}}$; find the base and the other angles, having given $\log 2=.3013,\log 79=1.89763$, $\log 1.36383=23.35578,\log \cot {{33}^{\circ }}{{20}^{'}}=10.18197,\log \sin {{33}^{\circ }}{{20}^{'}}=9.73998$,$\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262$,$\log \tan {{16}^{\circ }}{{55}^{'}}=9.48308,\log \sec {{16}^{\circ }}{{54}^{'}}=10.01917,\log \sec {{16}^{\circ }}{{55}^{'}}=10.01921$ \[\]
Answer
586.2k+ views
Hint: We use the law of tangent $\tan \left( \dfrac{B-C}{2} \right)=\dfrac{b-c}{b+c}\cot \dfrac{A}{2}$ where we assign $b=237$feet and $c=158$feet,$A={{66}^{\circ }}{{40}^{'}}$ and then take logarithm to get the value of $\dfrac{B-C}{2}$. We then find $\dfrac{B+C}{2}=\dfrac{180-A}{2}$. We solve for $B,C$ and obtain them. We use the formula $\cos \dfrac{B-C}{2}=\dfrac{b+c}{a}\sin \dfrac{A}{2}$ and take logarithm to get $a$. We assume infinitesimal change in the functions $\log \tan x,\log \sec x$ as constant. \[\]
Complete step by step answer:
We know from the law of tangent that that if there are the measurement of three angles are denoted as $A,B,C$ of triangle ABC and the length their opposite sides are denoted as $a,b,c$ respectively , then we write the relation among them as
\[\tan \left( \dfrac{B-C}{2} \right)=\dfrac{b-c}{b+c}\cot \dfrac{A}{2}\]
Let us assign $b=237$feet and $c=158$. The angle contained between the sides whose lengths are $b,c$ is $A={{66}^{\circ }}{{40}^{'}}$ as given in the question . We put these values and proceed
\[\tan \left( \dfrac{B-C}{2} \right)=\dfrac{237-158}{237+158}\cot \left( \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \right)=\dfrac{1}{5}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)=\dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)\]
We take logarithm both side and get ,
\[\begin{align}
& \log \tan \left( \dfrac{B-C}{2} \right)=\log \left( \dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right) \right) \\
& =\log 2-\log 10+\log \cot \left( {{33}^{\circ }}{{20}^{'}} \right) \\
& =.30103-1+10.18197=9.48300 \\
\end{align}\]
We are given the data in the question $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262,\log \tan {{16}^{\circ }}{{55}^{'}}=9.48308$. We approximate the change in $f\left( x \right)=\log \tan x$ to be constant for very small value like $dx={{1}^{'}}$. We can see the change as $dx={{1}^{'}}={{60}^{''}}$ leads to change in value of $\log \tan x$ as $\log \tan {{16}^{\circ }}{{55}^{'}}-\log \tan {{16}^{\circ }}{{54}^{'}}=9.48308-9.48262=0.00046$. The change in $\log \tan x$ with respect to change in $x$ from $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262$ to $\log \tan \left( \dfrac{B-C}{2} \right)=9.483$ is $9.483-9.48262=0.00038$. The equivalent change in $x$ for change of $0.00038$ is $\dfrac{0.00038}{0.00046}\times {{60}^{''}}={{50}^{''}}$. So we have
\[\dfrac{B-C}{2}={{16}^{\circ }}{{54}^{'}}+{{50}^{''}}={{16}^{\circ }}{{54}^{'}}{{50}^{''}}.....(1)\]
We know that $A+B+C={{180}^{\circ }}$. So we put the required value and obtain ,
\[\dfrac{B+C}{2}=\dfrac{180-A}{2}={{56}^{\circ }}{{40}^{'}}....(2)\]
We solve the linear pair of equation (1) and (2) and the measurement of the angles $B={{73}^{\circ }}{{34}^{'}}{{50}^{''}},C={{39}^{\circ }}{{45}^{'}}{{10}^{''}}$
We know dor the law of sine and cosine are interrelated as
\[\cos \dfrac{B-C}{2}=\dfrac{b+c}{a}\sin \dfrac{A}{2}\]
We put the given values , the obtained value $\dfrac{B-C}{2}$ and get ,
\[\begin{align}
& \cos {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=\dfrac{237+158}{a}\sin \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \\
& \Rightarrow a=395\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\
& \Rightarrow a=\dfrac{79\times 10}{2}\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\
\end{align}\]
We take logarithm both side and get ,
\[\Rightarrow \log a=\log 79+\log 10-\log 2+\log \sin {{33}^{\circ }}{{20}^{'}}+\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}...(3)\]
We again denote $f\left( x \right)=\log \sec x$. We can assume that for every small change in $x$ the change in $f\left( x \right)$ will be constant. So we have data from the question $\log \sec {{16}^{\circ }}{{54}^{'}}=10.01917,\log \sec {{16}^{\circ }}{{55}^{'}}=10.01921$. So the change in $x={{1}^{'}}={{60}^{''}}$ is equivalent to change in $f\left( x \right)=\log \sec x$ as $\log \sec {{16}^{\circ }}{{55}^{'}}-\log \sec {{16}^{\circ }}{{54}^{'}}=10.01921-10.01917=0.00004$. So the change $x={{50}^{''}}$ will be $\dfrac{{{50}^{''}}}{{{60}^{''}}}\times .00004=0.00003$. So we have \[\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=10.0197+0.00003=10.01920\]. So now we proceed in equation(3)
\[\begin{align}
& \Rightarrow \log a=2.89763-.30103+9.73998+10.01920 \\
& \Rightarrow \log a=\text{23}\text{.35578} \\
\end{align}\]
So we got $a=1.3683$feet. \[\]
Note: We assumed the changes in functions $\log \tan x,\log \sec x$ as constant because the changes in $x$ were infinitesimally small. When the change is infinitesimally small we can find the rate of change of functions using derivatives.
Complete step by step answer:
We know from the law of tangent that that if there are the measurement of three angles are denoted as $A,B,C$ of triangle ABC and the length their opposite sides are denoted as $a,b,c$ respectively , then we write the relation among them as
\[\tan \left( \dfrac{B-C}{2} \right)=\dfrac{b-c}{b+c}\cot \dfrac{A}{2}\]
Let us assign $b=237$feet and $c=158$. The angle contained between the sides whose lengths are $b,c$ is $A={{66}^{\circ }}{{40}^{'}}$ as given in the question . We put these values and proceed
\[\tan \left( \dfrac{B-C}{2} \right)=\dfrac{237-158}{237+158}\cot \left( \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \right)=\dfrac{1}{5}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)=\dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)\]
We take logarithm both side and get ,
\[\begin{align}
& \log \tan \left( \dfrac{B-C}{2} \right)=\log \left( \dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right) \right) \\
& =\log 2-\log 10+\log \cot \left( {{33}^{\circ }}{{20}^{'}} \right) \\
& =.30103-1+10.18197=9.48300 \\
\end{align}\]
We are given the data in the question $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262,\log \tan {{16}^{\circ }}{{55}^{'}}=9.48308$. We approximate the change in $f\left( x \right)=\log \tan x$ to be constant for very small value like $dx={{1}^{'}}$. We can see the change as $dx={{1}^{'}}={{60}^{''}}$ leads to change in value of $\log \tan x$ as $\log \tan {{16}^{\circ }}{{55}^{'}}-\log \tan {{16}^{\circ }}{{54}^{'}}=9.48308-9.48262=0.00046$. The change in $\log \tan x$ with respect to change in $x$ from $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262$ to $\log \tan \left( \dfrac{B-C}{2} \right)=9.483$ is $9.483-9.48262=0.00038$. The equivalent change in $x$ for change of $0.00038$ is $\dfrac{0.00038}{0.00046}\times {{60}^{''}}={{50}^{''}}$. So we have
\[\dfrac{B-C}{2}={{16}^{\circ }}{{54}^{'}}+{{50}^{''}}={{16}^{\circ }}{{54}^{'}}{{50}^{''}}.....(1)\]
We know that $A+B+C={{180}^{\circ }}$. So we put the required value and obtain ,
\[\dfrac{B+C}{2}=\dfrac{180-A}{2}={{56}^{\circ }}{{40}^{'}}....(2)\]
We solve the linear pair of equation (1) and (2) and the measurement of the angles $B={{73}^{\circ }}{{34}^{'}}{{50}^{''}},C={{39}^{\circ }}{{45}^{'}}{{10}^{''}}$
We know dor the law of sine and cosine are interrelated as
\[\cos \dfrac{B-C}{2}=\dfrac{b+c}{a}\sin \dfrac{A}{2}\]
We put the given values , the obtained value $\dfrac{B-C}{2}$ and get ,
\[\begin{align}
& \cos {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=\dfrac{237+158}{a}\sin \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \\
& \Rightarrow a=395\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\
& \Rightarrow a=\dfrac{79\times 10}{2}\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\
\end{align}\]
We take logarithm both side and get ,
\[\Rightarrow \log a=\log 79+\log 10-\log 2+\log \sin {{33}^{\circ }}{{20}^{'}}+\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}...(3)\]
We again denote $f\left( x \right)=\log \sec x$. We can assume that for every small change in $x$ the change in $f\left( x \right)$ will be constant. So we have data from the question $\log \sec {{16}^{\circ }}{{54}^{'}}=10.01917,\log \sec {{16}^{\circ }}{{55}^{'}}=10.01921$. So the change in $x={{1}^{'}}={{60}^{''}}$ is equivalent to change in $f\left( x \right)=\log \sec x$ as $\log \sec {{16}^{\circ }}{{55}^{'}}-\log \sec {{16}^{\circ }}{{54}^{'}}=10.01921-10.01917=0.00004$. So the change $x={{50}^{''}}$ will be $\dfrac{{{50}^{''}}}{{{60}^{''}}}\times .00004=0.00003$. So we have \[\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=10.0197+0.00003=10.01920\]. So now we proceed in equation(3)
\[\begin{align}
& \Rightarrow \log a=2.89763-.30103+9.73998+10.01920 \\
& \Rightarrow \log a=\text{23}\text{.35578} \\
\end{align}\]
So we got $a=1.3683$feet. \[\]
Note: We assumed the changes in functions $\log \tan x,\log \sec x$ as constant because the changes in $x$ were infinitesimally small. When the change is infinitesimally small we can find the rate of change of functions using derivatives.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

