
Two sets each of $20$ observations, have the same standard deviation $5$. The first set has a mean $17$ and second a mean $22$. Then the standard deviation of the set obtained by combining the given two sets is
${\text{(A) 5}}$
${\text{(B) 4}}{\text{.5}}$
${\text{(C) 5}}{\text{.59}}$
${\text{(D) 4}}$
Answer
557.7k+ views
Hint: Here in this question as known the values of mean, standard deviation and the number of terms in both the distribution, we will substitute all the values in the combined standard deviation formula to get the required answer.
Formula used: ${\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{{\text{n}}_{\text{1}}}{{{\sigma}}_{\text{1}}}^{\text{2}}{\text{+}}{{\text{n}}_{\text{2}}}{{{\sigma }}_{\text{2}}}^{\text{2}}}}{{{{\text{n}}_{\text{1}}}{\text{ + }}{{\text{n}}_{\text{2}}}}}{\text{+}}\dfrac{{{{\text{n}}_{\text{1}}}{{\text{n}}_{\text{2}}}{{{\text{(}}{{{{\bar x}}}_{\text{1}}}{\text{-}}{{{{\bar x}}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}{{{{{\text{(}}{{\text{n}}_{\text{1}}}{\text{+}}{{\text{n}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}} $
Where ${\text{S}}{\text{.D}}$ stands for the standard deviation
Complete step-by-step solution:
Let the number of terms in both the distribution be ${n_1}$ and ${n_2}$, since the total number of observations are same in both the sets,
${n_1} = 20$ and ${n_2} = 20$
Let ${\sigma _1}$ and ${\sigma _2}$ be the standard deviation of both the sets, since the standard deviation is same for both the sets, it can be written as:
${\sigma _1} = 17$ and ${\sigma _2} = 22$
Let ${{{\bar x}}_{\text{1}}}$ and ${{{\bar x}}_2}$ be the mean of both the distributions therefore,
${{{\bar x}}_{\text{1}}} = 17$ and ${{{\bar x}}_2} = 22$
On substituting all the values in the formula, we get:
${\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{\text{20}} \times {5^{\text{2}}}{\text{ + 20}} \times {5^{\text{2}}}}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{(17 - 22)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}} $
On squaring the terms we get:
$ \Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{( - 5)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}} $
Let us add the denominator term and we get
$ \Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{40}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times 25}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}} $
Let us multiply the numerator term and we can write it as,
$ \Rightarrow \sqrt {\dfrac{{500 + 500}}{{40}}{\text{ + }}\dfrac{{{\text{25}} \times 400}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}} $
On adding the numerator term and we get,
\[ \Rightarrow \sqrt {\dfrac{{1000}}{{40}}{\text{ + }}\dfrac{{10000}}{{1600}}} \]
Let us divide the term and we get
$ \Rightarrow \sqrt {{\text{25 + }}\dfrac{{25}}{{\text{4}}}} $
On taking the L.C.M we get:
$ \Rightarrow \sqrt {\dfrac{{25 \times 4 + 25}}{4}} $
This can be simplified as:
$ \Rightarrow \sqrt {\dfrac{{125}}{4}} $
Since the square root of $4$ is $2$ we take it out of the root part.
$ \Rightarrow \dfrac{1}{2}\sqrt {125} $
Now the root value of $\sqrt {125} $ is $11.18$ therefore,
$ \Rightarrow \dfrac{{11.18}}{2}$
$ \Rightarrow 5.59$
${\text{Combined S}}{\text{.D = 5}}{\text{.59}}$, which is the required answer.
Therefore, the correct option is ${\text{(C)}}$ which is $5.59$.
Note: The combined Standard deviation of two distributions would always be a very close answer to the original standard deviations of the two sets.
Also, in statistics there is a relation between the variance and standard deviation of a distribution. The standard deviation is the square root of the variance, it can be expressed as:
${\text{Standard deviation = }}\sqrt {{\text{variance}}} $
Formula used: ${\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{{\text{n}}_{\text{1}}}{{{\sigma}}_{\text{1}}}^{\text{2}}{\text{+}}{{\text{n}}_{\text{2}}}{{{\sigma }}_{\text{2}}}^{\text{2}}}}{{{{\text{n}}_{\text{1}}}{\text{ + }}{{\text{n}}_{\text{2}}}}}{\text{+}}\dfrac{{{{\text{n}}_{\text{1}}}{{\text{n}}_{\text{2}}}{{{\text{(}}{{{{\bar x}}}_{\text{1}}}{\text{-}}{{{{\bar x}}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}{{{{{\text{(}}{{\text{n}}_{\text{1}}}{\text{+}}{{\text{n}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}} $
Where ${\text{S}}{\text{.D}}$ stands for the standard deviation
Complete step-by-step solution:
Let the number of terms in both the distribution be ${n_1}$ and ${n_2}$, since the total number of observations are same in both the sets,
${n_1} = 20$ and ${n_2} = 20$
Let ${\sigma _1}$ and ${\sigma _2}$ be the standard deviation of both the sets, since the standard deviation is same for both the sets, it can be written as:
${\sigma _1} = 17$ and ${\sigma _2} = 22$
Let ${{{\bar x}}_{\text{1}}}$ and ${{{\bar x}}_2}$ be the mean of both the distributions therefore,
${{{\bar x}}_{\text{1}}} = 17$ and ${{{\bar x}}_2} = 22$
On substituting all the values in the formula, we get:
${\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{\text{20}} \times {5^{\text{2}}}{\text{ + 20}} \times {5^{\text{2}}}}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{(17 - 22)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}} $
On squaring the terms we get:
$ \Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{( - 5)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}} $
Let us add the denominator term and we get
$ \Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{40}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times 25}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}} $
Let us multiply the numerator term and we can write it as,
$ \Rightarrow \sqrt {\dfrac{{500 + 500}}{{40}}{\text{ + }}\dfrac{{{\text{25}} \times 400}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}} $
On adding the numerator term and we get,
\[ \Rightarrow \sqrt {\dfrac{{1000}}{{40}}{\text{ + }}\dfrac{{10000}}{{1600}}} \]
Let us divide the term and we get
$ \Rightarrow \sqrt {{\text{25 + }}\dfrac{{25}}{{\text{4}}}} $
On taking the L.C.M we get:
$ \Rightarrow \sqrt {\dfrac{{25 \times 4 + 25}}{4}} $
This can be simplified as:
$ \Rightarrow \sqrt {\dfrac{{125}}{4}} $
Since the square root of $4$ is $2$ we take it out of the root part.
$ \Rightarrow \dfrac{1}{2}\sqrt {125} $
Now the root value of $\sqrt {125} $ is $11.18$ therefore,
$ \Rightarrow \dfrac{{11.18}}{2}$
$ \Rightarrow 5.59$
${\text{Combined S}}{\text{.D = 5}}{\text{.59}}$, which is the required answer.
Therefore, the correct option is ${\text{(C)}}$ which is $5.59$.
Note: The combined Standard deviation of two distributions would always be a very close answer to the original standard deviations of the two sets.
Also, in statistics there is a relation between the variance and standard deviation of a distribution. The standard deviation is the square root of the variance, it can be expressed as:
${\text{Standard deviation = }}\sqrt {{\text{variance}}} $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

