
Two rectangular matrices of order $n\times m$ and $m\times k$ are multiplied in the same order. The resulting matrix formed is a
This question has multiple correct options
A. Rectangular Matrix of order $n\times k$
B. Square matrix of order m
C. Square matrix of order n if n = k
D. Rectangular Matrix of order $k\times n$
Answer
611.1k+ views
Hint: If there are m rows and n columns in the matrix, then the matrix is called a rectangular matrix of order $m\times n$ and a matrix having equal number of rows and columns is called square matrix of order n.
Complete step by step answer:
Let us consider the example,
Let A be the matrix of order $3\times 2$ and B be another matrix of order $2\times 1$, where \[A={{\left[ \begin{matrix}
1 \\
3 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
0 \\
1 \\
\end{matrix} \right]}_{3\times 2}}\] and $B={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]}_{2\times 1}}$
Now, \[AB={{\left[ \begin{matrix}
1 \\
3 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
0 \\
1 \\
\end{matrix} \right]}_{3\times 2}}{{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]}_{2\times 1}}={{\left[ \begin{matrix}
2+2 \\
3+0 \\
2+1 \\
\end{matrix} \right]}_{3\times 1}}={{\left[ \begin{matrix}
4 \\
3 \\
3 \\
\end{matrix} \right]}_{3\times 1}}\]
Two rectangular matrices of order $3\times 2$ and $2\times 1$ are multiplied, then the resulting matrix is a rectangular matrix of the order $3\times 1$.
Hence multiplying two rectangular matrices of order $n\times m$ and $m\times k$ is a rectangular matrix of order $n\times k$.
Therefore, the correct option is option (a).
Also, consider another example,
Let C be the matrix of order $2\times 3$ and D be another matrix of order $3\times 2$, where $C={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 & 1 \\
1 & 2 \\
\end{matrix} \right]}_{2\times 3}}$ and \[D={{\left[ \begin{matrix}
2 \\
1 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
3 \\
1 \\
\end{matrix} \right]}_{3\times 2}}\]
Now, $CD={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 & 1 \\
1 & 2 \\
\end{matrix} \right]}_{2\times 3}}{{\left[ \begin{matrix}
2 \\
1 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
3 \\
1 \\
\end{matrix} \right]}_{3\times 2}}={{\left[ \begin{matrix}
4+0+1 \\
2+1+2 \\
\end{matrix}\text{ }\begin{matrix}
0+0+1 \\
0+3+2 \\
\end{matrix} \right]}_{2\times 2}}={{\left[ \begin{matrix}
5 \\
5 \\
\end{matrix}\text{ }\begin{matrix}
1 \\
5 \\
\end{matrix} \right]}_{2\times 2}}$
Two rectangular matrices of order $2\times 3$ and $3\times 2$ are multiplied, then the resulting matrix is a square matrix of the order $2\times 2$.
Hence multiplying two rectangular matrices of order $n\times m$ and $m\times k$ is a square matrix of order n if n = k.
Therefore, the correct option is option (c).
Hence correct options for the given question are option (A) and option (C).
Note: The possibility for the mistake is that you might get confused with the concept that two matrices A and B are said to be conformable for the product AB if the number of columns in A is equal to the number of rows in B.
Complete step by step answer:
Let us consider the example,
Let A be the matrix of order $3\times 2$ and B be another matrix of order $2\times 1$, where \[A={{\left[ \begin{matrix}
1 \\
3 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
0 \\
1 \\
\end{matrix} \right]}_{3\times 2}}\] and $B={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]}_{2\times 1}}$
Now, \[AB={{\left[ \begin{matrix}
1 \\
3 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
0 \\
1 \\
\end{matrix} \right]}_{3\times 2}}{{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix} \right]}_{2\times 1}}={{\left[ \begin{matrix}
2+2 \\
3+0 \\
2+1 \\
\end{matrix} \right]}_{3\times 1}}={{\left[ \begin{matrix}
4 \\
3 \\
3 \\
\end{matrix} \right]}_{3\times 1}}\]
Two rectangular matrices of order $3\times 2$ and $2\times 1$ are multiplied, then the resulting matrix is a rectangular matrix of the order $3\times 1$.
Hence multiplying two rectangular matrices of order $n\times m$ and $m\times k$ is a rectangular matrix of order $n\times k$.
Therefore, the correct option is option (a).
Also, consider another example,
Let C be the matrix of order $2\times 3$ and D be another matrix of order $3\times 2$, where $C={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 & 1 \\
1 & 2 \\
\end{matrix} \right]}_{2\times 3}}$ and \[D={{\left[ \begin{matrix}
2 \\
1 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
3 \\
1 \\
\end{matrix} \right]}_{3\times 2}}\]
Now, $CD={{\left[ \begin{matrix}
2 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 & 1 \\
1 & 2 \\
\end{matrix} \right]}_{2\times 3}}{{\left[ \begin{matrix}
2 \\
1 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
0 \\
3 \\
1 \\
\end{matrix} \right]}_{3\times 2}}={{\left[ \begin{matrix}
4+0+1 \\
2+1+2 \\
\end{matrix}\text{ }\begin{matrix}
0+0+1 \\
0+3+2 \\
\end{matrix} \right]}_{2\times 2}}={{\left[ \begin{matrix}
5 \\
5 \\
\end{matrix}\text{ }\begin{matrix}
1 \\
5 \\
\end{matrix} \right]}_{2\times 2}}$
Two rectangular matrices of order $2\times 3$ and $3\times 2$ are multiplied, then the resulting matrix is a square matrix of the order $2\times 2$.
Hence multiplying two rectangular matrices of order $n\times m$ and $m\times k$ is a square matrix of order n if n = k.
Therefore, the correct option is option (c).
Hence correct options for the given question are option (A) and option (C).
Note: The possibility for the mistake is that you might get confused with the concept that two matrices A and B are said to be conformable for the product AB if the number of columns in A is equal to the number of rows in B.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

