
Two $\pi $ bonds and half $\sigma $ bonds are present in:
[A] $N_{2}^{+}$
[B] ${{N}_{2}}$
[C] $O_{2}^{+}$
[D] ${{O}_{2}}$
Answer
578.7k+ views
Hint: To answer this question, find out the bond order of each of the given molecules. We can find out the bond order from the molecular orbital theory. The molecule having 2.5 bond order will be the correct answer. We can find the bond order by subtracting the number of electrons in the antibonding orbital from the electrons in the bonding orbital and dividing it by 2.
Complete step by step answer:
We know that sigma and pi- are covalent bonds. We can find out the type of bonds by finding out the bond order.
Bond order is the number of covalent bonds shared between a pair of atoms. It indicates the stability of a bond. Bond order is given by, $B.O=\dfrac{1}{2}\left[ \left( No.of\text{ }{{\text{e}}^{-}}\text{ in bonding molecular orbital} \right)-\left( No.of\text{ }{{\text{e}}^{-}}\text{ in antibonding molecular orbital} \right) \right]$
Firstly, let us calculate the bond order of oxygen molecules. Number of electrons in ${{O}_{2}}$ are 16.
Therefore, its electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}$
As we can see there are 10 bonding orbitals and 6 antibonding orbitals.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-6 \right]=\dfrac{4}{2}=2$
Therefore, the bond order of ${{O}_{2}}$ is 2. And it has 1 sigma and 1 pi-bond. Therefore, this is not the correct option.
Next, we have $O_{2}^{+}$. It has 15 electrons. Its electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}\text{ }$
There are 10 bonding electrons and 5 antibonding electrons.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-5 \right]=\dfrac{5}{2}=2.5$
Here, even though the bond order is 2.5 but we have 1 sigma bond and 1.5 pi bond. Therefore, this is also not the correct answer.
Next, we have ${{N}_{2}}$. It has 14 electrons. Therefore, electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}$
There are 10 bonding and 4 anti-bonding orbits.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-4 \right]=\dfrac{6}{2}=3$. It had 3 pi-bonds therefore this option is incorrect.
Lastly, we have $N_{2}^{+}$. Total number of electrons $N_{2}^{+}$ = 13.
Electronic configuration of $N_{2}^{+}$= $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }\sigma 2{{p}_{z}}^{1}$
As we can see there are 9 electrons in the bonding orbital and 4 electrons in antibonding orbital.
Therefore, $B.O=\dfrac{1}{2}\left[ 9-4 \right]=\dfrac{5}{2}=2.5$
As we can see here that 1s and 2s – electrons are already cancelling each other by having equal bonding and antibonding thus we are only left with 2p-orbital. As we can clearly see that there are 4 pi-bonding electrons and each pi-bonding requires 2 electrons thus, there are 2 pi-bonds and 1 is sigma bond. Therefore, this is the correct answer.
So, the correct answer is “Option A”.
Note: In order to form a covalent bond, the atoms need to be in a specific arrangement which will allow the overlapping between the orbitals. It is difficult to break a sigma bond because sigma bonds are stronger than pi- bonds. A sigma bond is formed by the overlapping of atomic orbitals along the axis and pi-bond is formed by overlapping of two lobes of the atomic orbitals.
Complete step by step answer:
We know that sigma and pi- are covalent bonds. We can find out the type of bonds by finding out the bond order.
Bond order is the number of covalent bonds shared between a pair of atoms. It indicates the stability of a bond. Bond order is given by, $B.O=\dfrac{1}{2}\left[ \left( No.of\text{ }{{\text{e}}^{-}}\text{ in bonding molecular orbital} \right)-\left( No.of\text{ }{{\text{e}}^{-}}\text{ in antibonding molecular orbital} \right) \right]$
Firstly, let us calculate the bond order of oxygen molecules. Number of electrons in ${{O}_{2}}$ are 16.
Therefore, its electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}$
As we can see there are 10 bonding orbitals and 6 antibonding orbitals.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-6 \right]=\dfrac{4}{2}=2$
Therefore, the bond order of ${{O}_{2}}$ is 2. And it has 1 sigma and 1 pi-bond. Therefore, this is not the correct option.
Next, we have $O_{2}^{+}$. It has 15 electrons. Its electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }{{\pi }^{*}}2{{p}_{x}}^{1}\text{ }$
There are 10 bonding electrons and 5 antibonding electrons.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-5 \right]=\dfrac{5}{2}=2.5$
Here, even though the bond order is 2.5 but we have 1 sigma bond and 1.5 pi bond. Therefore, this is also not the correct answer.
Next, we have ${{N}_{2}}$. It has 14 electrons. Therefore, electronic configuration will be $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \sigma 2{{p}_{z}}^{2}\text{ }\pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}$
There are 10 bonding and 4 anti-bonding orbits.
Therefore, $B.O=\dfrac{1}{2}\left[ 10-4 \right]=\dfrac{6}{2}=3$. It had 3 pi-bonds therefore this option is incorrect.
Lastly, we have $N_{2}^{+}$. Total number of electrons $N_{2}^{+}$ = 13.
Electronic configuration of $N_{2}^{+}$= $\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\ \pi 2{{p}_{x}}^{2}\ \pi 2{{p}_{y}}^{2}\text{ }\sigma 2{{p}_{z}}^{1}$
As we can see there are 9 electrons in the bonding orbital and 4 electrons in antibonding orbital.
Therefore, $B.O=\dfrac{1}{2}\left[ 9-4 \right]=\dfrac{5}{2}=2.5$
As we can see here that 1s and 2s – electrons are already cancelling each other by having equal bonding and antibonding thus we are only left with 2p-orbital. As we can clearly see that there are 4 pi-bonding electrons and each pi-bonding requires 2 electrons thus, there are 2 pi-bonds and 1 is sigma bond. Therefore, this is the correct answer.
So, the correct answer is “Option A”.
Note: In order to form a covalent bond, the atoms need to be in a specific arrangement which will allow the overlapping between the orbitals. It is difficult to break a sigma bond because sigma bonds are stronger than pi- bonds. A sigma bond is formed by the overlapping of atomic orbitals along the axis and pi-bond is formed by overlapping of two lobes of the atomic orbitals.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

