
Two lines \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] are coplanar. Then \[\alpha \] can take value(s)
This question has multiple correct options
A. 1
B. 2
C. 3
D. 4
Answer
584.4k+ views
Hint: In this question we will proceed by rewriting the given lines into their standard equation form. Then use the condition of coplanarity for two lines to be in coplanar to get the required values of \[\alpha \].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Complete step by step answer:
Given lines are \[{L_1}:x = 5,\dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and \[{L_2}:x = \alpha ,\dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\]
Here we can rewrite lines \[{L_1}\] as \[{L_1}:\dfrac{{x - 5}}{0} = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and the line \[{L_2}\] as \[{L_2}:\dfrac{{x - \alpha }}{0} = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}\] in the standard form.
We know that the condition of the two lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Since the given lines \[{L_1}\] and \[{L_2}\]are coplanar, according to the condition of coplanarity we have
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 5}&y&z \\
0&{3 - \alpha }&{ - 2} \\
0&{ - 1}&{2 - \alpha }
\end{array}} \right| = 0\]
Opening the determinant with first column, we get
\[
\Rightarrow x - 5\left[ {\left( {3 - \alpha } \right)\left( {2 - \alpha } \right) - \left( { - 2} \right)\left( { - 1} \right)} \right] - 0\left[ {y\left( {2 - \alpha } \right) - \left( { - 1} \right)\left( z \right)} \right] + 0\left[ {y\left( { - 2} \right) - z\left( { - 1} \right)} \right] = 0 \\
\Rightarrow x - 5\left[ {\left( {{\alpha ^2} - 5\alpha + 6} \right) - 2} \right] - 0 + 0 = 0 \\
\Rightarrow x - 5\left( {{\alpha ^2} - 5\alpha + 6 - 2} \right) = 0 \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = \dfrac{0}{{x - 5}} \\
\Rightarrow {\alpha ^2} - 5\alpha + 4 = 0 \\
\]
Splitting the terms and taking common, we have
\[
\Rightarrow {\alpha ^2} - \alpha - 4\alpha + 4 = 0 \\
\Rightarrow \alpha \left( {\alpha - 1} \right) - 4\left( {\alpha - 1} \right) = 0 \\
\Rightarrow \left( {\alpha - 1} \right)\left( {\alpha - 4} \right) = 0 \\
\therefore \alpha = 1,{\text{4}} \\
\]
Therefore, the values of \[\alpha \] are 1 and 4.
Thus, the correct options are A and D.
Note:
The condition that the two lines in three-dimensional \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] to be coplanar is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

