
Two identical thin plano-convex glass lenses (refractive index 1.5) each having a radius of curvature of 20 cm are placed with their convex surfaces in contact at the center. The intervening space is filled with the oil of refractive index 1.7. The focal length of the combination is (A). -50 cm(B). 50 cm(C). -20 cm(D). -25 cm
Answer
595.5k+ views
Hint: Solve the question by directly using the lens maker’s formula for the plano-convex lens, and then by keeping the values of the known parameters which are refractive index, the radius of curvature and then find the unknown values.
Complete step-by-step solution:
Note: Plano-convex lenses have one spherical surface and one flat surface. The radius of the curvature of the plane surface is infinite. So, as mentioned in the solution by using a lens maker formula, find the focal length and then find the focal length of the combination.
Formula used: $\dfrac{1}{f} = (\mu - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ , $\dfrac{1}{{{f_{eq}}}} = 2 \times \dfrac{1}{f_{\text{lens}}}+ \dfrac{1}{f_{\text{concave}}}$
We have given that-
Refractive index of plano-convex glass lenses is ${\mu _g} = 1.5$
Radius of the two lenses is R = 20 cm
Refractive index of oil is ${\mu _{oil}} = 1.7$
Now, we know from lens maker formula for plano-convex lens-
$\dfrac{1}{f} = (\mu - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Here, f is the focal length of the lens, $\mu $ is the refractive index.
Here R1 = R and for a plane surface ${R_2} = \infty $ and ${\mu _g} = 1.5$
$\dfrac{1}{{{f_{lens}}}} = (1.5 - 1)\left( {\dfrac{1}{R} - 0} \right) = \dfrac{{0.5}}{R}$
When the intervening medium is filled with oil then, it will act as a concave lens of refractive index 1.7 .
$\dfrac{1}{{{f_{concave}}}} = (1.7 - 1)\left( { - \dfrac{1}{R} - \dfrac{1}{R}} \right) = - 0.7 \times \dfrac{2}{R} = \dfrac{{ - 1.4}}{R}$
Now, here we have two plano-convex lens and one concave lens,
So, $\dfrac{1}{{{f_{eq}}}} = 2 \times \dfrac{1}{{{f_{lens}}}} + \dfrac{1}{{{f_{concave}}}}$
Putting the values, we get-
$ \dfrac{1}{{{f_{eq}}}} = 2 \times \dfrac{{0.5}}{R} + \dfrac{{ - 1.4}}{R} = \dfrac{1}{R} - \dfrac{{1.4}}{R} = \dfrac{{ - 0.4}}{R} $
$ \Rightarrow {f_{eq}} = \dfrac{{ - R}}{{0.4}} $
Now R = 20 cm given.
$ \Rightarrow {f_{eq}} = \dfrac{{ - 20}}{{0.4}} = - 50$
Therefore, the focal length of the combination is -50 cm.
Hence, the correct option is (A).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

