
Two identical speakers emit sound waves of frequency 660 Hz uniformly in all directions. The audio output of each speaker is 1 m W and the speed of sound in air 330 m/s. A point P is a distance 2m from one speaker and 3m from the other. Find
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
b) If they are in coherence, the resultant I at P.
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Answer
581.7k+ views
Hint
Use the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ to take out individual intensity due to speakers. Then use the formulas $ I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $ and $ \,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $ to solve the problem. For part b) take the phase difference as 0.
Complete step by step answer
Given, Frequency = 660 Hz
Speed of sound in air = 330 m/s
Power of each speaker = 1 m W
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
$\Rightarrow {I_1} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_1} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(2)}^2}}} $
$\Rightarrow {I_1} = 19.9 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
(putting the values from the question)
For second speaker:
$\Rightarrow {I_2} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_2} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(3)}^2}}} $
$\Rightarrow {I_2} = 8.85 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
b) If they are in coherence, the resultant I at P.
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow {\text{and}}\,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $
We know
$\Rightarrow v = f\;\lambda $
$\Rightarrow \;\lambda = \dfrac{v}{f} = \dfrac{{330}}{{660}} = \dfrac{1}{2} $
$\Rightarrow \Delta x = 3 - 2 = 1 $ m
Hence,
$\Rightarrow \Delta \;\phi \;\; = \dfrac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi $
Hence the net intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (4\pi ) $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} $
Putting the values we have,
$\Rightarrow I = 19.9 + 8.85 + 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 55.3 \times {10^{ - 6}}W/{m^2} $
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Here, $ \;\phi \;\; = \pi $
Hence resultant intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (\pi ) $
$\Rightarrow I = {I_1} + {I_2} - 2\sqrt {{I_1}{I_2}} $
Putting values we get,
$\Rightarrow I = 19.9 + 8.85 - 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 28.7 \times {10^{ - 6}}W/{m^2} $.
Note
That the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ is only applicable for point sources. If the source is a line source or a sheet, then we can’t use this formula. We will have to use different formulas for taking out intensity.
Use the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ to take out individual intensity due to speakers. Then use the formulas $ I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $ and $ \,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $ to solve the problem. For part b) take the phase difference as 0.
Complete step by step answer
Given, Frequency = 660 Hz
Speed of sound in air = 330 m/s
Power of each speaker = 1 m W
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
$\Rightarrow {I_1} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_1} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(2)}^2}}} $
$\Rightarrow {I_1} = 19.9 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
(putting the values from the question)
For second speaker:
$\Rightarrow {I_2} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_2} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(3)}^2}}} $
$\Rightarrow {I_2} = 8.85 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
b) If they are in coherence, the resultant I at P.
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow {\text{and}}\,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $
We know
$\Rightarrow v = f\;\lambda $
$\Rightarrow \;\lambda = \dfrac{v}{f} = \dfrac{{330}}{{660}} = \dfrac{1}{2} $
$\Rightarrow \Delta x = 3 - 2 = 1 $ m
Hence,
$\Rightarrow \Delta \;\phi \;\; = \dfrac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi $
Hence the net intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (4\pi ) $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} $
Putting the values we have,
$\Rightarrow I = 19.9 + 8.85 + 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 55.3 \times {10^{ - 6}}W/{m^2} $
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Here, $ \;\phi \;\; = \pi $
Hence resultant intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (\pi ) $
$\Rightarrow I = {I_1} + {I_2} - 2\sqrt {{I_1}{I_2}} $
Putting values we get,
$\Rightarrow I = 19.9 + 8.85 - 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 28.7 \times {10^{ - 6}}W/{m^2} $.
Note
That the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ is only applicable for point sources. If the source is a line source or a sheet, then we can’t use this formula. We will have to use different formulas for taking out intensity.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

