
Two identical speakers emit sound waves of frequency 660 Hz uniformly in all directions. The audio output of each speaker is 1 m W and the speed of sound in air 330 m/s. A point P is a distance 2m from one speaker and 3m from the other. Find
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
b) If they are in coherence, the resultant I at P.
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Answer
567k+ views
Hint
Use the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ to take out individual intensity due to speakers. Then use the formulas $ I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $ and $ \,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $ to solve the problem. For part b) take the phase difference as 0.
Complete step by step answer
Given, Frequency = 660 Hz
Speed of sound in air = 330 m/s
Power of each speaker = 1 m W
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
$\Rightarrow {I_1} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_1} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(2)}^2}}} $
$\Rightarrow {I_1} = 19.9 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
(putting the values from the question)
For second speaker:
$\Rightarrow {I_2} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_2} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(3)}^2}}} $
$\Rightarrow {I_2} = 8.85 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
b) If they are in coherence, the resultant I at P.
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow {\text{and}}\,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $
We know
$\Rightarrow v = f\;\lambda $
$\Rightarrow \;\lambda = \dfrac{v}{f} = \dfrac{{330}}{{660}} = \dfrac{1}{2} $
$\Rightarrow \Delta x = 3 - 2 = 1 $ m
Hence,
$\Rightarrow \Delta \;\phi \;\; = \dfrac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi $
Hence the net intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (4\pi ) $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} $
Putting the values we have,
$\Rightarrow I = 19.9 + 8.85 + 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 55.3 \times {10^{ - 6}}W/{m^2} $
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Here, $ \;\phi \;\; = \pi $
Hence resultant intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (\pi ) $
$\Rightarrow I = {I_1} + {I_2} - 2\sqrt {{I_1}{I_2}} $
Putting values we get,
$\Rightarrow I = 19.9 + 8.85 - 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 28.7 \times {10^{ - 6}}W/{m^2} $.
Note
That the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ is only applicable for point sources. If the source is a line source or a sheet, then we can’t use this formula. We will have to use different formulas for taking out intensity.
Use the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ to take out individual intensity due to speakers. Then use the formulas $ I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $ and $ \,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $ to solve the problem. For part b) take the phase difference as 0.
Complete step by step answer
Given, Frequency = 660 Hz
Speed of sound in air = 330 m/s
Power of each speaker = 1 m W
a) Intensities $ {I_1} $ and $ {I_2} $ from each speaker from P separately.
$\Rightarrow {I_1} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_1} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(2)}^2}}} $
$\Rightarrow {I_1} = 19.9 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
(putting the values from the question)
For second speaker:
$\Rightarrow {I_2} = \dfrac{P}{{4\pi {R^2}}} $
$\Rightarrow {I_2} = \dfrac{{1 \times {{10}^{ - 3}}}}{{4\pi \times {{(3)}^2}}} $
$\Rightarrow {I_2} = 8.85 \times {10^{ - 6}}{\text{W/}}{{\text{m}}^{\text{2}}} $
b) If they are in coherence, the resultant I at P.
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow {\text{and}}\,\;\phi \;\; = \dfrac{{2\pi }}{{\;\lambda }}\Delta x $
We know
$\Rightarrow v = f\;\lambda $
$\Rightarrow \;\lambda = \dfrac{v}{f} = \dfrac{{330}}{{660}} = \dfrac{1}{2} $
$\Rightarrow \Delta x = 3 - 2 = 1 $ m
Hence,
$\Rightarrow \Delta \;\phi \;\; = \dfrac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi $
Hence the net intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (4\pi ) $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} $
Putting the values we have,
$\Rightarrow I = 19.9 + 8.85 + 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 55.3 \times {10^{ - 6}}W/{m^2} $
c) The resultant I at P if the two waves differ by a phase of $ \pi $ at the time of emission.
Here, $ \;\phi \;\; = \pi $
Hence resultant intensity becomes,
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \Delta \;\phi \;\; $
$\Rightarrow I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos (\pi ) $
$\Rightarrow I = {I_1} + {I_2} - 2\sqrt {{I_1}{I_2}} $
Putting values we get,
$\Rightarrow I = 19.9 + 8.85 - 2\sqrt {19.9 \times } 8.85 $
$\Rightarrow I = 28.7 \times {10^{ - 6}}W/{m^2} $.
Note
That the formula $ {I_1} = \dfrac{P}{{4\pi {R^2}}} $ is only applicable for point sources. If the source is a line source or a sheet, then we can’t use this formula. We will have to use different formulas for taking out intensity.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

