
Two harmonic waves of monochromatic light $Y_1 = a coswt$ and $y_2 = \text{a cos}\left( \text{wt}+\text{ }\!\!\theta\!\!\text{ } \right) $ ent some are superimposed on each other. Show that the maximum intensity in the interference pattern is four times the intensity due to each slit. Hence write the conditions for constructive and destructive interference in terms of the phase angle $ \text{ }\!\!\theta\!\!\text{ } $ .
Answer
551.7k+ views
Hint: A harmonic of such a wave is a wave with a frequency that is positive integer multiple of frequency of the original wave, known as the fundamental frequency. The intensity of light is directly proportional to the square of amplitude of the wave.
$ \text{I}=4{{\text{a}}^{2}}\text{ co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $
For constructive interference $ \text{ }\!\!\theta\!\!\text{ }=2\text{n }\!\!\pi\!\!\text{ } $
For destructive interference $ \text{ }\!\!\theta\!\!\text{ }=\left( 2\text{n}\pm 1 \right)\dfrac{\text{ }\!\!\pi\!\!\text{ }}{2} $.
Complete step by step solution
Two harmonic waves of monochromatic light
$ \begin{align}
& {{\text{Y}}_{1}}=\text{a cos wt} \\
& {{\text{Y}}_{2}}=\text{a cos}\left( \text{wt}+\text{ }\!\!\theta\!\!\text{ } \right) \\
\end{align} $
When they superimposed on each other
$ \begin{align}
& \text{Y=}{{\text{Y}}_{1}}+{{\text{Y}}_{2}} \\
& =\text{a cos wt}+\text{a cos}\left( \text{wt }+\text{ }\!\!\theta\!\!\text{ } \right) \\
\end{align} $
$ \begin{align}
& =\text{a}\left[ \text{cos wt}+\cos \left( \text{wt }+\text{ }\!\!\theta\!\!\text{ } \right) \right] \\
& =\text{2a cos}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}}\text{ cos}\dfrac{\text{w}}{2} \\
\end{align} $
The amplitude of the resultant displacement is $ 2\text{a cos}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $ . The intensity of light is directly proportional to the square of amplitude of the wave. The resultant intensity is given by:
$ \text{I}=4{{\text{a}}^{2}}\text{ co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $
$ \therefore $ Intensity $ =4\text{ I co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} $
At the maximum, $ \text{ }\!\!\theta\!\!\text{ }=\pm 2\text{ n }\!\!\pi\!\!\text{ } $
$ \therefore $ $ {{\cos }^{2}}\text{ }\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=1 $
At the maxima, $ \text{I}=4\text{ }{{\text{I}}_{\text{o}}}=4\times $ intensity due to one slit
$ \text{I}=\vartriangle {{\text{I}}_{\text{o}}}{{\cos }^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} $
For constructive interference, I is maximum it is possible when $ {{\cos }^{2}}\left( \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} \right)=1 $ ;
$ \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=\text{n }\!\!\pi\!\!\text{ ; }\!\!\theta\!\!\text{ =2n }\!\!\pi\!\!\text{ } $
For destructive interference I is maximum i.e I=o
It is possible when
$ \begin{align}
& {{\cos }^{2}}\left( \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} \right)=0; \\
& \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=\dfrac{\left( 2\text{n}-1 \right)\text{ }\!\!\pi\!\!\text{ }}{2}, \\
& \text{ }\!\!\theta\!\!\text{ }=\left( 2\text{n}\pm \right)\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\
\end{align} $ .
Note
The frequency of the first harmonic is equal to wave speed divided by twice the length of the string. Its applications are clock, guitar, violin etc. For resonance in a taut string, the first harmonic is determined for a wave from one antinode and two nodes. Knowledge of nodes and antinodes is important in the case of harmonic waves.
$ \text{I}=4{{\text{a}}^{2}}\text{ co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $
For constructive interference $ \text{ }\!\!\theta\!\!\text{ }=2\text{n }\!\!\pi\!\!\text{ } $
For destructive interference $ \text{ }\!\!\theta\!\!\text{ }=\left( 2\text{n}\pm 1 \right)\dfrac{\text{ }\!\!\pi\!\!\text{ }}{2} $.
Complete step by step solution
Two harmonic waves of monochromatic light
$ \begin{align}
& {{\text{Y}}_{1}}=\text{a cos wt} \\
& {{\text{Y}}_{2}}=\text{a cos}\left( \text{wt}+\text{ }\!\!\theta\!\!\text{ } \right) \\
\end{align} $
When they superimposed on each other
$ \begin{align}
& \text{Y=}{{\text{Y}}_{1}}+{{\text{Y}}_{2}} \\
& =\text{a cos wt}+\text{a cos}\left( \text{wt }+\text{ }\!\!\theta\!\!\text{ } \right) \\
\end{align} $
$ \begin{align}
& =\text{a}\left[ \text{cos wt}+\cos \left( \text{wt }+\text{ }\!\!\theta\!\!\text{ } \right) \right] \\
& =\text{2a cos}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}}\text{ cos}\dfrac{\text{w}}{2} \\
\end{align} $
The amplitude of the resultant displacement is $ 2\text{a cos}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $ . The intensity of light is directly proportional to the square of amplitude of the wave. The resultant intensity is given by:
$ \text{I}=4{{\text{a}}^{2}}\text{ co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{\text{2}} $
$ \therefore $ Intensity $ =4\text{ I co}{{\text{s}}^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} $
At the maximum, $ \text{ }\!\!\theta\!\!\text{ }=\pm 2\text{ n }\!\!\pi\!\!\text{ } $
$ \therefore $ $ {{\cos }^{2}}\text{ }\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=1 $
At the maxima, $ \text{I}=4\text{ }{{\text{I}}_{\text{o}}}=4\times $ intensity due to one slit
$ \text{I}=\vartriangle {{\text{I}}_{\text{o}}}{{\cos }^{2}}\dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} $
For constructive interference, I is maximum it is possible when $ {{\cos }^{2}}\left( \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} \right)=1 $ ;
$ \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=\text{n }\!\!\pi\!\!\text{ ; }\!\!\theta\!\!\text{ =2n }\!\!\pi\!\!\text{ } $
For destructive interference I is maximum i.e I=o
It is possible when
$ \begin{align}
& {{\cos }^{2}}\left( \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2} \right)=0; \\
& \dfrac{\text{ }\!\!\theta\!\!\text{ }}{2}=\dfrac{\left( 2\text{n}-1 \right)\text{ }\!\!\pi\!\!\text{ }}{2}, \\
& \text{ }\!\!\theta\!\!\text{ }=\left( 2\text{n}\pm \right)\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\
\end{align} $ .
Note
The frequency of the first harmonic is equal to wave speed divided by twice the length of the string. Its applications are clock, guitar, violin etc. For resonance in a taut string, the first harmonic is determined for a wave from one antinode and two nodes. Knowledge of nodes and antinodes is important in the case of harmonic waves.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

