
Two consecutive numbers from \[1,2,3,........................,n\] are removed. The arithmetic mean of the remaining number is \[\dfrac{{105}}{4}\], then the value of ‘\[n\]’ is,
A. 48
B. 49
C. 50
D. 51
Answer
599.7k+ views
Hint: First of all, find the sum of the remaining terms and then their arithmetic mean. As ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even. Then find the value of \[n\] by substituting it with another variable which is always even (like \[2r\]). So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

