
What trigonometric ratios of angles from 0° to 90° are equal to the value ‘0’?
Answer
593.7k+ views
Hint – In order to find which trigonometric function with angles from 0° to 90° are equal to value 0, we write the values of all the trigonometric functions from the angles 0° to 90° and pick the function at an angle where it is zero.
Complete step-by-step answer:
The trigonometric table of all function with values of angles between 0° to 90° are shown below:
$\begin{array}{*{20}{c}}
{{\text{Angle}}}&{{\text{Sin}}}&{{\text{Cos}}}&{{\text{Tan}}}&{{\text{Cot}}}&{{\text{Sec}}}&{{\text{Cosec}}} \\
{0^\circ }&0&1&0&{{\text{undefined}}}&1&{{\text{undefined}}} \\
{30^\circ }&{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{{\sqrt 3 }}}&{\sqrt 3 }&{\dfrac{2}{{\sqrt 3 }}}&2 \\
{45^\circ }&{\dfrac{1}{{\sqrt 2 }}}&{\dfrac{1}{{\sqrt 2 }}}&1&1&{\sqrt 2 }&{\sqrt 2 } \\
{60^\circ }&{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}&{\sqrt 3 }&{\dfrac{1}{{\sqrt 3 }}}&2&{\dfrac{2}{{\sqrt 3 }}} \\
{90^\circ }&1&0&{{\text{undefined}}}&0&{{\text{undefined}}}&1
\end{array}$
Hence from the table of trigonometric functions in between the angles 0° to 90°, we observe the value 0 occurring at the following function values –
Sin 0° = 0
Cos 90° = 0
Tan 0° = 0
Cot 90° = 0
Note – In order to solve this type of question the key is to accurately remember the values of all trigonometric functions from the angles 0° to 90°.
Otherwise, there is an easy way to memorize the trigonometric table, which is by memorizing the values of Sin and Cos functions and deriving the values of other trigonometric functions by expressing them in terms of Sin and Cos functions, as follows
${\text{Tan }}\theta {\text{ = }}\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$
$
{\text{Cot }}\theta {\text{ = }}\dfrac{{{\text{Cos }}\theta }}{{{\text{Sin }}\theta }} \\
{\text{Cosec }}\theta {\text{ = }}\dfrac{1}{{{\text{Sin }}\theta }} \\
{\text{Sec }}\theta {\text{ = }}\dfrac{1}{{{\text{Cos }}\theta }} \\
$
Complete step-by-step answer:
The trigonometric table of all function with values of angles between 0° to 90° are shown below:
$\begin{array}{*{20}{c}}
{{\text{Angle}}}&{{\text{Sin}}}&{{\text{Cos}}}&{{\text{Tan}}}&{{\text{Cot}}}&{{\text{Sec}}}&{{\text{Cosec}}} \\
{0^\circ }&0&1&0&{{\text{undefined}}}&1&{{\text{undefined}}} \\
{30^\circ }&{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{{\sqrt 3 }}}&{\sqrt 3 }&{\dfrac{2}{{\sqrt 3 }}}&2 \\
{45^\circ }&{\dfrac{1}{{\sqrt 2 }}}&{\dfrac{1}{{\sqrt 2 }}}&1&1&{\sqrt 2 }&{\sqrt 2 } \\
{60^\circ }&{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}&{\sqrt 3 }&{\dfrac{1}{{\sqrt 3 }}}&2&{\dfrac{2}{{\sqrt 3 }}} \\
{90^\circ }&1&0&{{\text{undefined}}}&0&{{\text{undefined}}}&1
\end{array}$
Hence from the table of trigonometric functions in between the angles 0° to 90°, we observe the value 0 occurring at the following function values –
Sin 0° = 0
Cos 90° = 0
Tan 0° = 0
Cot 90° = 0
Note – In order to solve this type of question the key is to accurately remember the values of all trigonometric functions from the angles 0° to 90°.
Otherwise, there is an easy way to memorize the trigonometric table, which is by memorizing the values of Sin and Cos functions and deriving the values of other trigonometric functions by expressing them in terms of Sin and Cos functions, as follows
${\text{Tan }}\theta {\text{ = }}\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$
$
{\text{Cot }}\theta {\text{ = }}\dfrac{{{\text{Cos }}\theta }}{{{\text{Sin }}\theta }} \\
{\text{Cosec }}\theta {\text{ = }}\dfrac{1}{{{\text{Sin }}\theta }} \\
{\text{Sec }}\theta {\text{ = }}\dfrac{1}{{{\text{Cos }}\theta }} \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

