
Trigonometric function: In $ \Delta ABC $ with usual notations. Prove that –
$ {(a - b)^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) + {(a + b)^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) = {c^2} $
Answer
569.1k+ views
Hint: Follow step by step approach; apply sine and cosine identity and the expansion of the whole square formula. Also, substitute the semi-perimeter values and then simplify the equations for the resultant answer.
Complete step-by-step answer:
Take the Left hand side of the given equation –
LHS $ = {(a - b)^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) + {(a + b)^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) $
Open the brackets using the algebraic expansion for the square of the difference of two terms and the square of the addition of two terms and place it in the above equation –
LHS $ = ({a^2} - 2ab + {b^2}){\cos ^2}\left( {\dfrac{c}{2}} \right) + ({a^2} + 2ab + {b^2}){\sin ^2}\left( {\dfrac{c}{2}} \right) $
Open the brackets and multiply the terms. When you multiply one positive term with positive it gives positive term but when you multiply one negative term with positive it gives negative term.
LHS $ = {a^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) - 2ab{\cos ^2}\left( {\dfrac{c}{2}} \right) + {b^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) + {a^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) + 2ab{\sin ^2}\left( {\dfrac{c}{2}} \right) + {b^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) $
Make the pair of like terms –
LHS\[ = \underline {{a^2}{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {a^2}{{\sin }^2}\left( {\dfrac{c}{2}} \right)} - \underline {2ab{{\cos }^2}\left( {\dfrac{c}{2}} \right) + 2ab{{\sin }^2}\left( {\dfrac{c}{2}} \right)} + \underline {{b^2}{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {b^2}{{\sin }^2}\left( {\dfrac{c}{2}} \right)} \]
Take out the common multiples from the above paired terms-
LHS $ = {a^2}\left( {{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right) + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) + {b^2}\left( {{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right) $
Using the identity - $ {\cos ^2}\theta + {\sin ^2}\theta = 1 $ in the above equation-
LHS $ = {a^2}\left( 1 \right) + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) + {b^2}\left( 1 \right) $
It can be re-written as –
LHS $ = {a^2} + {b^2} + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) $
Again place the identity, $ {\cos ^2}\theta = 1 - {\sin ^2}\theta $ in the above equation-
LHS $ = {a^2} + {b^2} + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - \left[ {1 - {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right]} \right) $
Open the brackets; there is negative sign outside the bracket, so sign of the terms inside the bracket will change. Positive term will become negative and vice-versa.
LHS $ = {a^2} + {b^2} + 2ab\left( {\underline {{{\sin }^2}\left( {\dfrac{c}{2}} \right)} - 1 + \underline {{{\sin }^2}\left( {\dfrac{c}{2}} \right)} } \right) $
Add the like terms and simplify the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {2{{\sin }^2}\left( {\dfrac{c}{2}} \right) - 1} \right) $
But, $ \sin \dfrac{c}{2} = \sqrt {\dfrac{{(s - a)(s - b)}}{{ab}}} $ taking square on both the sides of the equation.
$ \Rightarrow {\sin ^2}\dfrac{c}{2} = \dfrac{{(s - a)(s - b)}}{{ab}} $ place this relation in the above LHS
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(s - a)(s - b)}}{{ab}}} \right) - 1} \right) $
Take LCM and simplify –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(s - a)(s - b) - ab}}{{ab}}} \right)} \right) $
Also, semi-perimeter $ s = \dfrac{{a + b + c}}{2} $ place it in the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(\dfrac{{a + b + c}}{2} - a)(\dfrac{{a + b + c}}{2} - b)}}{{ab}} - 1} \right)} \right) $
Simplify the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(\dfrac{{a + b + c - 2a}}{2})(\dfrac{{a + b + c - 2b}}{2})}}{{ab}} - 1} \right)} \right) $
Common multiples from the numerator and the denominator cancel each other.
LHS $ = {a^2} + {b^2} + 2ab\left( {\dfrac{{(b + c - a)(a + c - b)}}{{2ab}} - 1} \right) $
Now multiply the term outside the bracket.
LHS $ = {a^2} + {b^2} + \left( {(b + c - a)(a + c - b) - 2ab} \right) $
The above equation can be rearranged as –
LHS $ = {a^2} + {b^2} + \left( {(c + b - a)(c + a - b) - 2ab} \right) $
It is the difference of two squares formulas-
LHS $ = \underline {{a^2} + {b^2}} + {c^2} - {(b - a)^2}\underline { - 2ab} $
Again the three terms makes the perfect square-
LHS $ = {(b - a)^2} + {c^2} - {(b - a)^2} $
Equal values with opposite signs cancel each other.
LHS $ = + {c^2} = $ RHS.
$ LHS = RHS $
Hence, proved.
Note: Use algebraic expansion formula correctly and be careful while opening the brackets and the sign of the terms. When there is a positive sign outside the bracket then there is no change in sign of the terms inside the bracket when you open but when there is negative sign outside the bracket then the sign of the terms inside the bracket changes when opened. Positive terms become negative and vice-versa.
Complete step-by-step answer:
Take the Left hand side of the given equation –
LHS $ = {(a - b)^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) + {(a + b)^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) $
Open the brackets using the algebraic expansion for the square of the difference of two terms and the square of the addition of two terms and place it in the above equation –
LHS $ = ({a^2} - 2ab + {b^2}){\cos ^2}\left( {\dfrac{c}{2}} \right) + ({a^2} + 2ab + {b^2}){\sin ^2}\left( {\dfrac{c}{2}} \right) $
Open the brackets and multiply the terms. When you multiply one positive term with positive it gives positive term but when you multiply one negative term with positive it gives negative term.
LHS $ = {a^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) - 2ab{\cos ^2}\left( {\dfrac{c}{2}} \right) + {b^2}{\cos ^2}\left( {\dfrac{c}{2}} \right) + {a^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) + 2ab{\sin ^2}\left( {\dfrac{c}{2}} \right) + {b^2}{\sin ^2}\left( {\dfrac{c}{2}} \right) $
Make the pair of like terms –
LHS\[ = \underline {{a^2}{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {a^2}{{\sin }^2}\left( {\dfrac{c}{2}} \right)} - \underline {2ab{{\cos }^2}\left( {\dfrac{c}{2}} \right) + 2ab{{\sin }^2}\left( {\dfrac{c}{2}} \right)} + \underline {{b^2}{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {b^2}{{\sin }^2}\left( {\dfrac{c}{2}} \right)} \]
Take out the common multiples from the above paired terms-
LHS $ = {a^2}\left( {{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right) + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) + {b^2}\left( {{{\cos }^2}\left( {\dfrac{c}{2}} \right) + {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right) $
Using the identity - $ {\cos ^2}\theta + {\sin ^2}\theta = 1 $ in the above equation-
LHS $ = {a^2}\left( 1 \right) + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) + {b^2}\left( 1 \right) $
It can be re-written as –
LHS $ = {a^2} + {b^2} + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - {{\cos }^2}\left( {\dfrac{c}{2}} \right)} \right) $
Again place the identity, $ {\cos ^2}\theta = 1 - {\sin ^2}\theta $ in the above equation-
LHS $ = {a^2} + {b^2} + 2ab\left( {{{\sin }^2}\left( {\dfrac{c}{2}} \right) - \left[ {1 - {{\sin }^2}\left( {\dfrac{c}{2}} \right)} \right]} \right) $
Open the brackets; there is negative sign outside the bracket, so sign of the terms inside the bracket will change. Positive term will become negative and vice-versa.
LHS $ = {a^2} + {b^2} + 2ab\left( {\underline {{{\sin }^2}\left( {\dfrac{c}{2}} \right)} - 1 + \underline {{{\sin }^2}\left( {\dfrac{c}{2}} \right)} } \right) $
Add the like terms and simplify the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {2{{\sin }^2}\left( {\dfrac{c}{2}} \right) - 1} \right) $
But, $ \sin \dfrac{c}{2} = \sqrt {\dfrac{{(s - a)(s - b)}}{{ab}}} $ taking square on both the sides of the equation.
$ \Rightarrow {\sin ^2}\dfrac{c}{2} = \dfrac{{(s - a)(s - b)}}{{ab}} $ place this relation in the above LHS
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(s - a)(s - b)}}{{ab}}} \right) - 1} \right) $
Take LCM and simplify –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(s - a)(s - b) - ab}}{{ab}}} \right)} \right) $
Also, semi-perimeter $ s = \dfrac{{a + b + c}}{2} $ place it in the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(\dfrac{{a + b + c}}{2} - a)(\dfrac{{a + b + c}}{2} - b)}}{{ab}} - 1} \right)} \right) $
Simplify the above equation –
LHS $ = {a^2} + {b^2} + 2ab\left( {\left( {\dfrac{{2(\dfrac{{a + b + c - 2a}}{2})(\dfrac{{a + b + c - 2b}}{2})}}{{ab}} - 1} \right)} \right) $
Common multiples from the numerator and the denominator cancel each other.
LHS $ = {a^2} + {b^2} + 2ab\left( {\dfrac{{(b + c - a)(a + c - b)}}{{2ab}} - 1} \right) $
Now multiply the term outside the bracket.
LHS $ = {a^2} + {b^2} + \left( {(b + c - a)(a + c - b) - 2ab} \right) $
The above equation can be rearranged as –
LHS $ = {a^2} + {b^2} + \left( {(c + b - a)(c + a - b) - 2ab} \right) $
It is the difference of two squares formulas-
LHS $ = \underline {{a^2} + {b^2}} + {c^2} - {(b - a)^2}\underline { - 2ab} $
Again the three terms makes the perfect square-
LHS $ = {(b - a)^2} + {c^2} - {(b - a)^2} $
Equal values with opposite signs cancel each other.
LHS $ = + {c^2} = $ RHS.
$ LHS = RHS $
Hence, proved.
Note: Use algebraic expansion formula correctly and be careful while opening the brackets and the sign of the terms. When there is a positive sign outside the bracket then there is no change in sign of the terms inside the bracket when you open but when there is negative sign outside the bracket then the sign of the terms inside the bracket changes when opened. Positive terms become negative and vice-versa.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

