
How many triangles are possible given $m\angle C={{63}^{\circ }}$ , b = 9 and c = 12?
Answer
538.2k+ views
Hint: Now we are given that b = 9, c = 12 and $\angle C={{63}^{\circ }}$ .
Now we know that according to the law of sin we have, $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$
Complete step by step answer:
Now first consider $\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$
Now substituting the given values we get,
$\Rightarrow \dfrac{9}{\sin B}=\dfrac{12}{\sin {{63}^{\circ }}}$
Cross multiplying in the above equation we get,
$\Rightarrow \sin B\times 12=9\times \sin {{63}^{\circ }}$
Now substituting the value of $\sin {{63}^{\circ }}$ we get,
$\begin{align}
& \Rightarrow \sin B\times 12=9\times 0.89. \\
& \Rightarrow \sin B=\dfrac{9\times 0.89}{12} \\
& \Rightarrow \sin B=0.668 \\
& \Rightarrow B={{\sin }^{-1}}\left( 0.668 \right) \\
& \Rightarrow B={{42}^{\circ }} \\
\end{align}$
Now we know that the sum of all angles of triangles is equal to ${{180}^{\circ }}$
Hence we get, $\angle A+\angle B+\angle C={{180}^{\circ }}$
$\begin{align}
& \Rightarrow {{63}^{\circ }}+{{42}^{\circ }}+\angle A={{180}^{\circ }} \\
& \Rightarrow \angle A={{75}^{\circ }} \\
\end{align}$
Hence $\angle A={{75}^{\circ }}$ .
Now consider the ratio $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}$
Substituting the values in the equation we get,
$\Rightarrow \dfrac{a}{\sin {{75}^{\circ }}}=\dfrac{9}{\sin {{42}^{\circ }}}$
Now rearranging the terms we get,
$\begin{align}
& \Rightarrow a=\dfrac{\sin {{75}^{\circ }}\times 9}{\sin {{42}^{\circ }}} \\
& \Rightarrow a=13 \\
\end{align}$
Hence we have $a=13,b=9,c=12$ and $\angle A={{75}^{\circ }},\angle B={{42}^{\circ }}$ and $\angle C={{63}^{\circ }}$
Hence we can only form one triangle with the given values.
Note: Now note that when we have given one angle and two sides we can just draw one triangle. Similarly if we are given three sides we can just draw one triangle. Note that with just 3 angles given more than infinite triangles can be drawn.
Now we know that according to the law of sin we have, $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$
Complete step by step answer:
Now first consider $\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$
Now substituting the given values we get,
$\Rightarrow \dfrac{9}{\sin B}=\dfrac{12}{\sin {{63}^{\circ }}}$
Cross multiplying in the above equation we get,
$\Rightarrow \sin B\times 12=9\times \sin {{63}^{\circ }}$
Now substituting the value of $\sin {{63}^{\circ }}$ we get,
$\begin{align}
& \Rightarrow \sin B\times 12=9\times 0.89. \\
& \Rightarrow \sin B=\dfrac{9\times 0.89}{12} \\
& \Rightarrow \sin B=0.668 \\
& \Rightarrow B={{\sin }^{-1}}\left( 0.668 \right) \\
& \Rightarrow B={{42}^{\circ }} \\
\end{align}$
Now we know that the sum of all angles of triangles is equal to ${{180}^{\circ }}$
Hence we get, $\angle A+\angle B+\angle C={{180}^{\circ }}$
$\begin{align}
& \Rightarrow {{63}^{\circ }}+{{42}^{\circ }}+\angle A={{180}^{\circ }} \\
& \Rightarrow \angle A={{75}^{\circ }} \\
\end{align}$
Hence $\angle A={{75}^{\circ }}$ .
Now consider the ratio $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}$
Substituting the values in the equation we get,
$\Rightarrow \dfrac{a}{\sin {{75}^{\circ }}}=\dfrac{9}{\sin {{42}^{\circ }}}$
Now rearranging the terms we get,
$\begin{align}
& \Rightarrow a=\dfrac{\sin {{75}^{\circ }}\times 9}{\sin {{42}^{\circ }}} \\
& \Rightarrow a=13 \\
\end{align}$
Hence we have $a=13,b=9,c=12$ and $\angle A={{75}^{\circ }},\angle B={{42}^{\circ }}$ and $\angle C={{63}^{\circ }}$
Hence we can only form one triangle with the given values.
Note: Now note that when we have given one angle and two sides we can just draw one triangle. Similarly if we are given three sides we can just draw one triangle. Note that with just 3 angles given more than infinite triangles can be drawn.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

