
Transform to Cartesian coordinates the equation:
$r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $
Answer
584.7k+ views
Hint: In order to transform the given equation into Cartesian coordinates, we first expand the given equation $\left( {\sin 3\theta {\text{ and }}\cos 3\theta } \right)$ and then substitute some variable in such a way that it expresses all the trigonometric and the variables in the given equation in terms of itself. Thus, we obtain a quadratic equation.
Complete step by step answer:
Given Data,
$r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $
The given Cartesian equation is, $r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $ --- (1)
Now we know the formula of sin 3θ and cos 3θ are given as follows:
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $ and $\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
Substituting the above formulae in equation (1), we get
$ \Rightarrow r\left( {\left( {4{{\cos }^3}\theta - 3\cos \theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right)} \right) = 5k\sin \theta \cos \theta $
$ \Rightarrow r\left[ {4\left( {{{\cos }^3}\theta - {{\sin }^3}\theta } \right) + 3\left( {\sin \theta - \cos \theta } \right)} \right] = 5k\sin \theta \cos \theta $ ……… (2)
Now let us consider two variables x and y such that $x = r\sin \theta $ and $y = r\cos \theta $, substitute them in equation (2), we get
$ \Rightarrow r\left[ {4\left( {{{\left( {\dfrac{y}{r}} \right)}^3} - {{\left( {\dfrac{x}{r}} \right)}^3}} \right) + 3\left( {\dfrac{x}{r} - \dfrac{y}{r}} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)$
\[ \Rightarrow r\left[ {4\left( {\dfrac{{{y^3} - {x^3}}}{{{r^3}}}} \right) + 3\left( {\dfrac{{x - y}}{r}} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{{{r^2}}}\left[ {4\left( {{y^3} - {x^3}} \right) + 3{r^2}\left( {x - y} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)\]
\[ \Rightarrow \left[ {4\left( {{y^3} - {x^3}} \right) + 3{r^2}\left( {x - y} \right)} \right] = 5k\left( {xy} \right)\] ……. (3)
As we know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$, and here $\sin \theta = \dfrac{x}{r}$ and $\cos \theta = \dfrac{y}{r}$
Putting this, we will get
$ \Rightarrow {\left( {\dfrac{x}{r}} \right)^2} + {\left( {\dfrac{y}{r}} \right)^2} = 1$
$ \Rightarrow {x^2} + {y^2} = {r^2}$
Put this value of ${r^2}$ in equation (3),
\[ \Rightarrow \left[ {4\left( {{y^3} - {x^3}} \right) + 3\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \right] = 5k\left( {xy} \right)\]
Now, solving this, we will get
\[ \Rightarrow \left[ {4{y^3} - 4{x^3} + 3\left( {{x^3} - {x^2}y + {y^2}x - {y^3}} \right)} \right] = 5k\left( {xy} \right)\]
\[ \Rightarrow \left[ {4{y^3} - 4{x^3} + 3{x^3} - 3{x^2}y + 3{y^2}x - 3{y^3}} \right] = 5k\left( {xy} \right)\]
\[ \Rightarrow \left[ {{y^3} - {x^3} - 3{x^2}y + 3{y^2}x} \right] = 5k\left( {xy} \right)\]
Therefore, the given equation $r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $ is expressed in Cartesian form as
\[ \Rightarrow \left[ {{y^3} - {x^3} - 3{x^2}y + 3{y^2}x} \right] = 5k\left( {xy} \right)\]
Note: In order to solve this type of questions the key is to know how to consider a variable that eliminates all the trigonometric terms in the equation and converts them into Cartesian form. This can be achieved as we keep on solving problems like this.
Here the way we consider the variable x and y, we end up eliminating all the r terms and θ terms in the equation in order to obtain a pure quadratic equation.
It is very essential to know a few useful trigonometric formulae such as sin 3θ, cos 3θ and the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ which help us reach to the answer in problems like these.
Complete step by step answer:
Given Data,
$r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $
The given Cartesian equation is, $r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $ --- (1)
Now we know the formula of sin 3θ and cos 3θ are given as follows:
$\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $ and $\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
Substituting the above formulae in equation (1), we get
$ \Rightarrow r\left( {\left( {4{{\cos }^3}\theta - 3\cos \theta } \right) + \left( {3\sin \theta - 4{{\sin }^3}\theta } \right)} \right) = 5k\sin \theta \cos \theta $
$ \Rightarrow r\left[ {4\left( {{{\cos }^3}\theta - {{\sin }^3}\theta } \right) + 3\left( {\sin \theta - \cos \theta } \right)} \right] = 5k\sin \theta \cos \theta $ ……… (2)
Now let us consider two variables x and y such that $x = r\sin \theta $ and $y = r\cos \theta $, substitute them in equation (2), we get
$ \Rightarrow r\left[ {4\left( {{{\left( {\dfrac{y}{r}} \right)}^3} - {{\left( {\dfrac{x}{r}} \right)}^3}} \right) + 3\left( {\dfrac{x}{r} - \dfrac{y}{r}} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)$
\[ \Rightarrow r\left[ {4\left( {\dfrac{{{y^3} - {x^3}}}{{{r^3}}}} \right) + 3\left( {\dfrac{{x - y}}{r}} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{{{r^2}}}\left[ {4\left( {{y^3} - {x^3}} \right) + 3{r^2}\left( {x - y} \right)} \right] = 5k\left( {\dfrac{{xy}}{{{r^2}}}} \right)\]
\[ \Rightarrow \left[ {4\left( {{y^3} - {x^3}} \right) + 3{r^2}\left( {x - y} \right)} \right] = 5k\left( {xy} \right)\] ……. (3)
As we know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$, and here $\sin \theta = \dfrac{x}{r}$ and $\cos \theta = \dfrac{y}{r}$
Putting this, we will get
$ \Rightarrow {\left( {\dfrac{x}{r}} \right)^2} + {\left( {\dfrac{y}{r}} \right)^2} = 1$
$ \Rightarrow {x^2} + {y^2} = {r^2}$
Put this value of ${r^2}$ in equation (3),
\[ \Rightarrow \left[ {4\left( {{y^3} - {x^3}} \right) + 3\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \right] = 5k\left( {xy} \right)\]
Now, solving this, we will get
\[ \Rightarrow \left[ {4{y^3} - 4{x^3} + 3\left( {{x^3} - {x^2}y + {y^2}x - {y^3}} \right)} \right] = 5k\left( {xy} \right)\]
\[ \Rightarrow \left[ {4{y^3} - 4{x^3} + 3{x^3} - 3{x^2}y + 3{y^2}x - 3{y^3}} \right] = 5k\left( {xy} \right)\]
\[ \Rightarrow \left[ {{y^3} - {x^3} - 3{x^2}y + 3{y^2}x} \right] = 5k\left( {xy} \right)\]
Therefore, the given equation $r\left( {\cos 3\theta + \sin 3\theta } \right) = 5k\sin \theta \cos \theta $ is expressed in Cartesian form as
\[ \Rightarrow \left[ {{y^3} - {x^3} - 3{x^2}y + 3{y^2}x} \right] = 5k\left( {xy} \right)\]
Note: In order to solve this type of questions the key is to know how to consider a variable that eliminates all the trigonometric terms in the equation and converts them into Cartesian form. This can be achieved as we keep on solving problems like this.
Here the way we consider the variable x and y, we end up eliminating all the r terms and θ terms in the equation in order to obtain a pure quadratic equation.
It is very essential to know a few useful trigonometric formulae such as sin 3θ, cos 3θ and the trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ which help us reach to the answer in problems like these.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

