
Total number of words formed by the letters of the word 'MISSISSIPPI' in which any two S are separated is equal to:
A) 7350
B) 6300
C) 12600
D) 5000
Answer
572.7k+ views
Hint: A permutation is an arrangement of all or part of a set of objects, with regard to the order of the arrangement, and formula for total arrangement is \[\dfrac{{n!}}{{\left( {p! \times q! \times r!} \right)}}\]. Using this formula, multiple types of questions related to permutation can be solved. One could say it is an ordered combination.
Complete step-by-step answer:
There are 11 letters in the word “MISSISSIPPI”.
Here, We have 4 I's, 4 S's , 2P's & 1 M.
Given in the question that no two S should be together, which we can place S at there places,
_M_I_I_I_I_P_P_
So there are 8 places in which we have to place 4 S’s
Therefore, the possible No. of words of given by,
= \[\dfrac{{{}^8{C_4} \times 7!}}{{4!2!}} \\
7!=7*6*5*4*3*2*1\\
4!=4*3*2*1\\
2!=2*1\\
{}^8{C_4}= \dfrac{{8!}}{{4!4!}}\\
= 7350{\text{ ways}}\]
Note: A permutation or combination is a set of ordered things. The “things” can be anything at all: a list of planets, a set of numbers, or a grocery list.Combination: If you don’t care what order you have things, it’s a combination. Think of combining ingredients, or musical chords: Flour, salt and water in a bowl is the same as salt, water and flour. Lottery tickets, where you pick a few numbers, are a combination. That’s because the order doesn’t matter (but the numbers you select do).Permutation: If you care about order, it’s a permutation. Picking winners for a first, second and third place raffle is a permutation, because the order matters. Permutation isn’t a word you use in everyday language.
Complete step-by-step answer:
There are 11 letters in the word “MISSISSIPPI”.
Here, We have 4 I's, 4 S's , 2P's & 1 M.
Given in the question that no two S should be together, which we can place S at there places,
_M_I_I_I_I_P_P_
So there are 8 places in which we have to place 4 S’s
Therefore, the possible No. of words of given by,
= \[\dfrac{{{}^8{C_4} \times 7!}}{{4!2!}} \\
7!=7*6*5*4*3*2*1\\
4!=4*3*2*1\\
2!=2*1\\
{}^8{C_4}= \dfrac{{8!}}{{4!4!}}\\
= 7350{\text{ ways}}\]
Note: A permutation or combination is a set of ordered things. The “things” can be anything at all: a list of planets, a set of numbers, or a grocery list.Combination: If you don’t care what order you have things, it’s a combination. Think of combining ingredients, or musical chords: Flour, salt and water in a bowl is the same as salt, water and flour. Lottery tickets, where you pick a few numbers, are a combination. That’s because the order doesn’t matter (but the numbers you select do).Permutation: If you care about order, it’s a permutation. Picking winners for a first, second and third place raffle is a permutation, because the order matters. Permutation isn’t a word you use in everyday language.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

