
Top surface of a raised platform is in the shape of a regular octagon as shown in the figure. Find the area of the octagonal surface.
Answer
593.1k+ views
HINT: The given figure can be divided into 2 similar trapeziums and 1 rectangle.
The area of a trapezium is given by the formula
Area \[=\dfrac{h\cdot ({{l}_{1}}+{{l}_{2}})}{2}\] (Where ‘h’ is the height between the two parallel faces of a trapezium and \[{{l}_{1}}\ and\ {{l}_{2}}\] are the lengths of the parallel sides)
The area of a rectangle is given by the formula
Area \[=l\times b\] (Where ‘l’ is the length of the rectangle and ‘b’ is the breadth of the rectangle).
Complete step by step answer:
As given in the question, the value of the length of one of the parallel sides of the trapezium is 11 m and the height of the trapezium is 4 m.
As the figure is a regular octagon, therefore, we can get the length of the other parallel side as 5 m.
Now, the area of the trapezium is
\[\begin{align}
& =\dfrac{4\times (11+5)}{2} \\
& =4\times 8 \\
& =32\ {{m}^{2}} \\
\end{align}\]
(Using the formula as mentioned in the hint) \[\]
Similarly, the area of the rectangle can be calculated as its length and breadth are 11 m and 5 m respectively.
\[\begin{align}
& =11\times 5 \\
& =55\ {{m}^{2}} \\
\end{align}\]
Hence, the area of the complete octagon is area of rectangle+ \[2\times \] area of trapezium.
Therefore, the area is 55+ \[2\times \] 32 that is \[119\ {{m}^{2}}\] .
NOTE:The students can make an error in finding the plane or line of symmetry in the octagon but that is of no use.Every figure’s area can be evaluated similarly, just by dividing the figure into smaller and simpler shapes.
.
The area of a trapezium is given by the formula
Area \[=\dfrac{h\cdot ({{l}_{1}}+{{l}_{2}})}{2}\] (Where ‘h’ is the height between the two parallel faces of a trapezium and \[{{l}_{1}}\ and\ {{l}_{2}}\] are the lengths of the parallel sides)
The area of a rectangle is given by the formula
Area \[=l\times b\] (Where ‘l’ is the length of the rectangle and ‘b’ is the breadth of the rectangle).
Complete step by step answer:
As given in the question, the value of the length of one of the parallel sides of the trapezium is 11 m and the height of the trapezium is 4 m.
As the figure is a regular octagon, therefore, we can get the length of the other parallel side as 5 m.
Now, the area of the trapezium is
\[\begin{align}
& =\dfrac{4\times (11+5)}{2} \\
& =4\times 8 \\
& =32\ {{m}^{2}} \\
\end{align}\]
(Using the formula as mentioned in the hint) \[\]
Similarly, the area of the rectangle can be calculated as its length and breadth are 11 m and 5 m respectively.
\[\begin{align}
& =11\times 5 \\
& =55\ {{m}^{2}} \\
\end{align}\]
Hence, the area of the complete octagon is area of rectangle+ \[2\times \] area of trapezium.
Therefore, the area is 55+ \[2\times \] 32 that is \[119\ {{m}^{2}}\] .
NOTE:The students can make an error in finding the plane or line of symmetry in the octagon but that is of no use.Every figure’s area can be evaluated similarly, just by dividing the figure into smaller and simpler shapes.
.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Who is the father of microbiology A Leeuwenhoek B Pasteur class 8 biology CBSE

