
How many tiles whose length and breadth are $12cm$ and $5cm$ respectively will be needed to fit a rectangular region whose length and breadth are respectively $100cm$ and $144cm$.
Answer
606.6k+ views
Hint: For the tiles to fit in the rectangular region, their combined area must be equal to the area of the rectangular region.
According to the question, the length and breadth of the tiles are $l = 12cm$ and $b = 5cm$ respectively.
And we know that the area of a rectangle is $A = l \times b$. So, using this formula we will find out the area of each tile. We’ll get:
$
\Rightarrow A = 12 \times 5, \\
\Rightarrow A = 60c{m^2} \\
$
The length and breadth of the rectangular region are $100cm$ and $144cm $respectively. So, its area will be:
$
\Rightarrow {A_R} = 100 \times 144, \\
\Rightarrow {A_R} = 14400 \\
$
Suppose we have $n$ number of tiles covering the entire region of the rectangle. Then the combined area of $n$ tiles must be the same as the area of the rectangle. So, we have:
$
\Rightarrow n \times 60 = 14400, \\
\Rightarrow n = \dfrac{{14400}}{{60}}, \\
\Rightarrow n = 240 \\
$
Therefore, we need $240$ tiles to fit in the entire rectangular region.
Note: Since the rectangle is a two dimensional figure, we have compared the area. For three dimensional figures such as cylinder, sphere or cone we always compare volume for such types of problems.
According to the question, the length and breadth of the tiles are $l = 12cm$ and $b = 5cm$ respectively.
And we know that the area of a rectangle is $A = l \times b$. So, using this formula we will find out the area of each tile. We’ll get:
$
\Rightarrow A = 12 \times 5, \\
\Rightarrow A = 60c{m^2} \\
$
The length and breadth of the rectangular region are $100cm$ and $144cm $respectively. So, its area will be:
$
\Rightarrow {A_R} = 100 \times 144, \\
\Rightarrow {A_R} = 14400 \\
$
Suppose we have $n$ number of tiles covering the entire region of the rectangle. Then the combined area of $n$ tiles must be the same as the area of the rectangle. So, we have:
$
\Rightarrow n \times 60 = 14400, \\
\Rightarrow n = \dfrac{{14400}}{{60}}, \\
\Rightarrow n = 240 \\
$
Therefore, we need $240$ tiles to fit in the entire rectangular region.
Note: Since the rectangle is a two dimensional figure, we have compared the area. For three dimensional figures such as cylinder, sphere or cone we always compare volume for such types of problems.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 6 English: Engaging Questions & Answers for Success

Trending doubts
Which one of the following groups comprises states class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Advantages and disadvantages of science

Distinguish between SouthWest and NorthEast monsoo class 8 social science CBSE


