
How many tiles whose length and breadth are $12cm$ and $5cm$ respectively will be needed to fit a rectangular region whose length and breadth are respectively $100cm$ and $144cm$.
Answer
594.3k+ views
Hint: For the tiles to fit in the rectangular region, their combined area must be equal to the area of the rectangular region.
According to the question, the length and breadth of the tiles are $l = 12cm$ and $b = 5cm$ respectively.
And we know that the area of a rectangle is $A = l \times b$. So, using this formula we will find out the area of each tile. We’ll get:
$
\Rightarrow A = 12 \times 5, \\
\Rightarrow A = 60c{m^2} \\
$
The length and breadth of the rectangular region are $100cm$ and $144cm $respectively. So, its area will be:
$
\Rightarrow {A_R} = 100 \times 144, \\
\Rightarrow {A_R} = 14400 \\
$
Suppose we have $n$ number of tiles covering the entire region of the rectangle. Then the combined area of $n$ tiles must be the same as the area of the rectangle. So, we have:
$
\Rightarrow n \times 60 = 14400, \\
\Rightarrow n = \dfrac{{14400}}{{60}}, \\
\Rightarrow n = 240 \\
$
Therefore, we need $240$ tiles to fit in the entire rectangular region.
Note: Since the rectangle is a two dimensional figure, we have compared the area. For three dimensional figures such as cylinder, sphere or cone we always compare volume for such types of problems.
According to the question, the length and breadth of the tiles are $l = 12cm$ and $b = 5cm$ respectively.
And we know that the area of a rectangle is $A = l \times b$. So, using this formula we will find out the area of each tile. We’ll get:
$
\Rightarrow A = 12 \times 5, \\
\Rightarrow A = 60c{m^2} \\
$
The length and breadth of the rectangular region are $100cm$ and $144cm $respectively. So, its area will be:
$
\Rightarrow {A_R} = 100 \times 144, \\
\Rightarrow {A_R} = 14400 \\
$
Suppose we have $n$ number of tiles covering the entire region of the rectangle. Then the combined area of $n$ tiles must be the same as the area of the rectangle. So, we have:
$
\Rightarrow n \times 60 = 14400, \\
\Rightarrow n = \dfrac{{14400}}{{60}}, \\
\Rightarrow n = 240 \\
$
Therefore, we need $240$ tiles to fit in the entire rectangular region.
Note: Since the rectangle is a two dimensional figure, we have compared the area. For three dimensional figures such as cylinder, sphere or cone we always compare volume for such types of problems.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Write a letter to your class teacher asking for 2 days class 8 english CBSE

Who commanded the Hector the first British trading class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE


