
Three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is
(a) which is isosceles
(b) equilateral
(c) having constant area
(d) None of these
Answer
586.2k+ views
Hint: Equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ having slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. Then ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ are in arithmetic progression (A.P) . Find the area of triangle using formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ if $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points.
Complete step by step answer:
Let us consider a parabola ${{y}^{2}}=4ax$ , then take three points on the parabola $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ . Now equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P,Q,R$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ . These tangents have slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. It is given in the question that these slopes are in harmonic progression (H.P).
Therefore ${{t}_{1}},{{t}_{2}},{{t}_{3}}$are in arithmetic progression (A.P) because a series is said to be in H.P when the reciprocals of the terms form an A.P . Let $d$ be the common difference of given A.P ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ then,
${{t}_{2}}-{{t}_{1}}=d$
${{t}_{3}}-{{t}_{2}}=d$
And ${{t}_{3}}-{{t}_{1}}=2d$
Now we will find the intersection points of tangent drawn from point $Q$ and $R$ , $R$ and $P$ , $P$ and $R$ . Let the point of intersection of tangents be A, B and C respectively. Then the coordinates of A, B and C are
$A=\{a{{t}_{2}}{{t}_{3}},a({{t}_{2}}+{{t}_{3}})\}$
$B=\{a{{t}_{3}}{{t}_{1}},a({{t}_{3}}+{{t}_{1}})\}$
$C=\{a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}})\}$
We will now find the area of triangle formed by points A, B and C. If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for area of triangle and coordinate points of A, B and C we will find the area of triangle $ABC$ we get,
Area of $\vartriangle ABC=\dfrac{1}{2}\left| \begin{matrix}
a{{t}_{2}}{{t}_{3}} & a({{t}_{2}}+{{t}_{3}}) & 1 \\
a{{t}_{3}}{{t}_{1}} & a({{t}_{3}}+{{t}_{1}}) & 1 \\
a{{t}_{1}}{{t}_{2}} & a({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Now we will find the value of determinant by using row and column transformation. For solving the determinant we will take out $a$ from column 1 and column 2.
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}{{t}_{1}} & ({{t}_{3}}+{{t}_{1}}) & 1 \\
{{t}_{1}}{{t}_{2}} & ({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Subtract row 2 and row 1 and substitute in row 2. Similarly subtract row 3 and row 1 and substitute in row 3 we get,
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}({{t}_{1}}-{{t}_{2}}) & ({{t}_{1}}-{{t}_{2}}) & 0 \\
{{t}_{2}}({{t}_{1}}-{{t}_{3}}) & ({{t}_{1}}-{{t}_{3}}) & 0 \\
\end{matrix} \right|$
Taking $({{t}_{1}}-{{t}_{3}})$ and $({{t}_{1}}-{{t}_{2}})$ common from row 3 and row 2 respectively we get,
$=\dfrac{1}{2}{{a}^{2}}({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}} & 1 & 0 \\
{{t}_{2}} & 1 & 0 \\
\end{matrix} \right|$
Now solving the determinant we get,
$=\dfrac{1}{2}{{a}^{2}}\left| ({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})({{t}_{2}}-{{t}_{3}}) \right|$
Earlier we have found out the value of ${{t}_{2}}-{{t}_{1}}=d$ , ${{t}_{3}}-{{t}_{2}}=d$ and ${{t}_{3}}-{{t}_{1}}=2d$ . Substituting these values above we get,
$\begin{align}
& =\dfrac{1}{2}{{a}^{2}}(d)(d)(2d) \\
& ={{a}^{2}}{{d}^{3}} \\
\end{align}$
Since the area of the triangle has come out to be a constant value so three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is having constant area. Hence, option (c) is correct.
Note:
If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for the area of triangle and coordinate points of A, B and C we will find the area of triangle ABC . Area of the triangle is a positive quantity so care should be taken when we calculate, if the value of the determinant turns out to be negative then take the modulus value of the result.
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ if $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points.
Complete step by step answer:
Let us consider a parabola ${{y}^{2}}=4ax$ , then take three points on the parabola $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ . Now equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P,Q,R$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ . These tangents have slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. It is given in the question that these slopes are in harmonic progression (H.P).
Therefore ${{t}_{1}},{{t}_{2}},{{t}_{3}}$are in arithmetic progression (A.P) because a series is said to be in H.P when the reciprocals of the terms form an A.P . Let $d$ be the common difference of given A.P ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ then,
${{t}_{2}}-{{t}_{1}}=d$
${{t}_{3}}-{{t}_{2}}=d$
And ${{t}_{3}}-{{t}_{1}}=2d$
Now we will find the intersection points of tangent drawn from point $Q$ and $R$ , $R$ and $P$ , $P$ and $R$ . Let the point of intersection of tangents be A, B and C respectively. Then the coordinates of A, B and C are
$A=\{a{{t}_{2}}{{t}_{3}},a({{t}_{2}}+{{t}_{3}})\}$
$B=\{a{{t}_{3}}{{t}_{1}},a({{t}_{3}}+{{t}_{1}})\}$
$C=\{a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}})\}$
We will now find the area of triangle formed by points A, B and C. If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for area of triangle and coordinate points of A, B and C we will find the area of triangle $ABC$ we get,
Area of $\vartriangle ABC=\dfrac{1}{2}\left| \begin{matrix}
a{{t}_{2}}{{t}_{3}} & a({{t}_{2}}+{{t}_{3}}) & 1 \\
a{{t}_{3}}{{t}_{1}} & a({{t}_{3}}+{{t}_{1}}) & 1 \\
a{{t}_{1}}{{t}_{2}} & a({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Now we will find the value of determinant by using row and column transformation. For solving the determinant we will take out $a$ from column 1 and column 2.
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}{{t}_{1}} & ({{t}_{3}}+{{t}_{1}}) & 1 \\
{{t}_{1}}{{t}_{2}} & ({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Subtract row 2 and row 1 and substitute in row 2. Similarly subtract row 3 and row 1 and substitute in row 3 we get,
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}({{t}_{1}}-{{t}_{2}}) & ({{t}_{1}}-{{t}_{2}}) & 0 \\
{{t}_{2}}({{t}_{1}}-{{t}_{3}}) & ({{t}_{1}}-{{t}_{3}}) & 0 \\
\end{matrix} \right|$
Taking $({{t}_{1}}-{{t}_{3}})$ and $({{t}_{1}}-{{t}_{2}})$ common from row 3 and row 2 respectively we get,
$=\dfrac{1}{2}{{a}^{2}}({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}} & 1 & 0 \\
{{t}_{2}} & 1 & 0 \\
\end{matrix} \right|$
Now solving the determinant we get,
$=\dfrac{1}{2}{{a}^{2}}\left| ({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})({{t}_{2}}-{{t}_{3}}) \right|$
Earlier we have found out the value of ${{t}_{2}}-{{t}_{1}}=d$ , ${{t}_{3}}-{{t}_{2}}=d$ and ${{t}_{3}}-{{t}_{1}}=2d$ . Substituting these values above we get,
$\begin{align}
& =\dfrac{1}{2}{{a}^{2}}(d)(d)(2d) \\
& ={{a}^{2}}{{d}^{3}} \\
\end{align}$
Since the area of the triangle has come out to be a constant value so three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is having constant area. Hence, option (c) is correct.
Note:
If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for the area of triangle and coordinate points of A, B and C we will find the area of triangle ABC . Area of the triangle is a positive quantity so care should be taken when we calculate, if the value of the determinant turns out to be negative then take the modulus value of the result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

