
Three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is
(a) which is isosceles
(b) equilateral
(c) having constant area
(d) None of these
Answer
571.8k+ views
Hint: Equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ having slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. Then ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ are in arithmetic progression (A.P) . Find the area of triangle using formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ if $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points.
Complete step by step answer:
Let us consider a parabola ${{y}^{2}}=4ax$ , then take three points on the parabola $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ . Now equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P,Q,R$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ . These tangents have slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. It is given in the question that these slopes are in harmonic progression (H.P).
Therefore ${{t}_{1}},{{t}_{2}},{{t}_{3}}$are in arithmetic progression (A.P) because a series is said to be in H.P when the reciprocals of the terms form an A.P . Let $d$ be the common difference of given A.P ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ then,
${{t}_{2}}-{{t}_{1}}=d$
${{t}_{3}}-{{t}_{2}}=d$
And ${{t}_{3}}-{{t}_{1}}=2d$
Now we will find the intersection points of tangent drawn from point $Q$ and $R$ , $R$ and $P$ , $P$ and $R$ . Let the point of intersection of tangents be A, B and C respectively. Then the coordinates of A, B and C are
$A=\{a{{t}_{2}}{{t}_{3}},a({{t}_{2}}+{{t}_{3}})\}$
$B=\{a{{t}_{3}}{{t}_{1}},a({{t}_{3}}+{{t}_{1}})\}$
$C=\{a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}})\}$
We will now find the area of triangle formed by points A, B and C. If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for area of triangle and coordinate points of A, B and C we will find the area of triangle $ABC$ we get,
Area of $\vartriangle ABC=\dfrac{1}{2}\left| \begin{matrix}
a{{t}_{2}}{{t}_{3}} & a({{t}_{2}}+{{t}_{3}}) & 1 \\
a{{t}_{3}}{{t}_{1}} & a({{t}_{3}}+{{t}_{1}}) & 1 \\
a{{t}_{1}}{{t}_{2}} & a({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Now we will find the value of determinant by using row and column transformation. For solving the determinant we will take out $a$ from column 1 and column 2.
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}{{t}_{1}} & ({{t}_{3}}+{{t}_{1}}) & 1 \\
{{t}_{1}}{{t}_{2}} & ({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Subtract row 2 and row 1 and substitute in row 2. Similarly subtract row 3 and row 1 and substitute in row 3 we get,
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}({{t}_{1}}-{{t}_{2}}) & ({{t}_{1}}-{{t}_{2}}) & 0 \\
{{t}_{2}}({{t}_{1}}-{{t}_{3}}) & ({{t}_{1}}-{{t}_{3}}) & 0 \\
\end{matrix} \right|$
Taking $({{t}_{1}}-{{t}_{3}})$ and $({{t}_{1}}-{{t}_{2}})$ common from row 3 and row 2 respectively we get,
$=\dfrac{1}{2}{{a}^{2}}({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}} & 1 & 0 \\
{{t}_{2}} & 1 & 0 \\
\end{matrix} \right|$
Now solving the determinant we get,
$=\dfrac{1}{2}{{a}^{2}}\left| ({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})({{t}_{2}}-{{t}_{3}}) \right|$
Earlier we have found out the value of ${{t}_{2}}-{{t}_{1}}=d$ , ${{t}_{3}}-{{t}_{2}}=d$ and ${{t}_{3}}-{{t}_{1}}=2d$ . Substituting these values above we get,
$\begin{align}
& =\dfrac{1}{2}{{a}^{2}}(d)(d)(2d) \\
& ={{a}^{2}}{{d}^{3}} \\
\end{align}$
Since the area of the triangle has come out to be a constant value so three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is having constant area. Hence, option (c) is correct.
Note:
If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for the area of triangle and coordinate points of A, B and C we will find the area of triangle ABC . Area of the triangle is a positive quantity so care should be taken when we calculate, if the value of the determinant turns out to be negative then take the modulus value of the result.
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ if $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points.
Complete step by step answer:
Let us consider a parabola ${{y}^{2}}=4ax$ , then take three points on the parabola $P(a{{t}_{1}}^{2},2a{{t}_{1}})$ , $Q(a{{t}_{2}}^{2},2a{{t}_{2}})$ and $R(a{{t}_{3}}^{2},2a{{t}_{3}})$ . Now equations of tangents to the parabola ${{y}^{2}}=4ax$ at point $P,Q,R$ is given by ${{t}_{1}}y=x+a{{t}_{1}}^{2}$ , ${{t}_{2}}y=x+a{{t}_{2}}^{2}$ and ${{t}_{3}}y=x+a{{t}_{3}}^{2}$ . These tangents have slope $\dfrac{1}{{{t}_{1}}}$ , $\dfrac{1}{{{t}_{2}}}$ and $\dfrac{1}{{{t}_{3}}}$ respectively. It is given in the question that these slopes are in harmonic progression (H.P).
Therefore ${{t}_{1}},{{t}_{2}},{{t}_{3}}$are in arithmetic progression (A.P) because a series is said to be in H.P when the reciprocals of the terms form an A.P . Let $d$ be the common difference of given A.P ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ then,
${{t}_{2}}-{{t}_{1}}=d$
${{t}_{3}}-{{t}_{2}}=d$
And ${{t}_{3}}-{{t}_{1}}=2d$
Now we will find the intersection points of tangent drawn from point $Q$ and $R$ , $R$ and $P$ , $P$ and $R$ . Let the point of intersection of tangents be A, B and C respectively. Then the coordinates of A, B and C are
$A=\{a{{t}_{2}}{{t}_{3}},a({{t}_{2}}+{{t}_{3}})\}$
$B=\{a{{t}_{3}}{{t}_{1}},a({{t}_{3}}+{{t}_{1}})\}$
$C=\{a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}})\}$
We will now find the area of triangle formed by points A, B and C. If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for area of triangle and coordinate points of A, B and C we will find the area of triangle $ABC$ we get,
Area of $\vartriangle ABC=\dfrac{1}{2}\left| \begin{matrix}
a{{t}_{2}}{{t}_{3}} & a({{t}_{2}}+{{t}_{3}}) & 1 \\
a{{t}_{3}}{{t}_{1}} & a({{t}_{3}}+{{t}_{1}}) & 1 \\
a{{t}_{1}}{{t}_{2}} & a({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Now we will find the value of determinant by using row and column transformation. For solving the determinant we will take out $a$ from column 1 and column 2.
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}{{t}_{1}} & ({{t}_{3}}+{{t}_{1}}) & 1 \\
{{t}_{1}}{{t}_{2}} & ({{t}_{1}}+{{t}_{2}}) & 1 \\
\end{matrix} \right|$
Subtract row 2 and row 1 and substitute in row 2. Similarly subtract row 3 and row 1 and substitute in row 3 we get,
$=\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}}({{t}_{1}}-{{t}_{2}}) & ({{t}_{1}}-{{t}_{2}}) & 0 \\
{{t}_{2}}({{t}_{1}}-{{t}_{3}}) & ({{t}_{1}}-{{t}_{3}}) & 0 \\
\end{matrix} \right|$
Taking $({{t}_{1}}-{{t}_{3}})$ and $({{t}_{1}}-{{t}_{2}})$ common from row 3 and row 2 respectively we get,
$=\dfrac{1}{2}{{a}^{2}}({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})\left| \begin{matrix}
{{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\
{{t}_{3}} & 1 & 0 \\
{{t}_{2}} & 1 & 0 \\
\end{matrix} \right|$
Now solving the determinant we get,
$=\dfrac{1}{2}{{a}^{2}}\left| ({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})({{t}_{2}}-{{t}_{3}}) \right|$
Earlier we have found out the value of ${{t}_{2}}-{{t}_{1}}=d$ , ${{t}_{3}}-{{t}_{2}}=d$ and ${{t}_{3}}-{{t}_{1}}=2d$ . Substituting these values above we get,
$\begin{align}
& =\dfrac{1}{2}{{a}^{2}}(d)(d)(2d) \\
& ={{a}^{2}}{{d}^{3}} \\
\end{align}$
Since the area of the triangle has come out to be a constant value so three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is having constant area. Hence, option (c) is correct.
Note:
If $({{x}_{1}},{{y}_{1}})$ , $({{x}_{2}},{{y}_{2}})$ and $({{x}_{3}},{{y}_{3}})$ be three points then area of triangle is given by the formula $\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ Using this formula for the area of triangle and coordinate points of A, B and C we will find the area of triangle ABC . Area of the triangle is a positive quantity so care should be taken when we calculate, if the value of the determinant turns out to be negative then take the modulus value of the result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

