
Three relations $ {R_1} $ , $ {R_2} $ and $ {R_3} $ are defined on set $ A = \left\{ {a,b,c} \right\} $ as follows:
I. $ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $
II. $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $
III. $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Discuss each of them from the point of view of being reflexive, symmetric and transitive.
Answer
571.5k+ views
Hint: For each problem to find reflexive need to have $ \left( {a,a} \right) $ that is same type of elements should be there and the condition to find whether the set is symmetric is that if $ a $ is related to $ b $ and $ b $ is related to $ a $ . If $ a $ related to $ b $ and $ b $ related to $ c $ then $ a $ related to $ c $ is the condition for transitive.
Complete step-by-step answer:
The set A is $ A = \left\{ {a,b,c} \right\} $ .
(i)
Given
$ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_1} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
We know that $ \left( {a,a} \right) $ , $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ is in $ {R_1} $ .
Hence, it is clear that $ {R_1} $ is reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_1} $ then $ \left( {y,x} \right) $ should be in $ {R_1} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_1} $ but $ \left( {b,a} \right) $ is not in $ {R_1} $ .
Hence, we can say that $ {R_1} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_1} $ and $ \left( {y,z} \right) $ in $ {R_1} $ then $ \left( {x,z} \right) $ is in $ {R_1} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here, we know $ \left( {a,b} \right) $ is in $ {R_1} $ and $ \left( {b,c} \right) $ is in $ {R_1} $ and also $ \left( {a,c} \right) $ is also in $ {R_1} $ .
Hence, $ {R_1} $ is transitive.
(ii)
Given $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_2} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is in $ {R_2} $ .
But $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ are not in $ {R_2} $
Hence it is clear that $ {R_2} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_2} $ then $ \left( {y,x} \right) $ should be in $ {R_2} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {b,a} \right) $ is in $ {R_2} $ .
But $ \left( {a,b} \right) $ is not in $ {R_2} $ .
Hence $ {R_2} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_2} $ and $ \left( {y,z} \right) $ in $ {R_2} $ then $ \left( {x,z} \right) $ is in $ {R_2} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {b,a} \right) $ is in $ {R_2} $ and $ \left( {a,c} \right) $ is in $ {R_2} $ and also $ \left( {b,c} \right) $ is not in $ {R_2} $ .
Hence, $ {R_2} $ is not transitive.
(iii)
Given $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_3} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is not in $ {R_3} $ .
Hence it is clear that $ {R_3} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_3} $ then $ \left( {y,x} \right) $ should be in $ {R_3} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_3} $ .
But $ \left( {b,a} \right) $ is in $ {R_3} $ .
Hence $ {R_3} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_3} $ and $ \left( {y,z} \right) $ in $ {R_3} $ then $ \left( {x,z} \right) $ is in $ {R_3} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {a,b} \right) $ is in $ {R_3} $ and $ \left( {b,c} \right) $ is in $ {R_3} $ and also $ \left( {a,c} \right) $ is not in $ {R_1} $ .
Hence, $ {R_3} $ is not transitive.
Note: Equivalence relation is expressed as the relation among elements of a particular set that could be transitive, reflexive or symmetric. To prove any equivalence relation, first we have to prove that it is reflexive relation, symmetric relation and transitive relation.
Complete step-by-step answer:
The set A is $ A = \left\{ {a,b,c} \right\} $ .
(i)
Given
$ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_1} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
We know that $ \left( {a,a} \right) $ , $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ is in $ {R_1} $ .
Hence, it is clear that $ {R_1} $ is reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_1} $ then $ \left( {y,x} \right) $ should be in $ {R_1} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_1} $ but $ \left( {b,a} \right) $ is not in $ {R_1} $ .
Hence, we can say that $ {R_1} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_1} $ and $ \left( {y,z} \right) $ in $ {R_1} $ then $ \left( {x,z} \right) $ is in $ {R_1} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here, we know $ \left( {a,b} \right) $ is in $ {R_1} $ and $ \left( {b,c} \right) $ is in $ {R_1} $ and also $ \left( {a,c} \right) $ is also in $ {R_1} $ .
Hence, $ {R_1} $ is transitive.
(ii)
Given $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_2} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is in $ {R_2} $ .
But $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ are not in $ {R_2} $
Hence it is clear that $ {R_2} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_2} $ then $ \left( {y,x} \right) $ should be in $ {R_2} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {b,a} \right) $ is in $ {R_2} $ .
But $ \left( {a,b} \right) $ is not in $ {R_2} $ .
Hence $ {R_2} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_2} $ and $ \left( {y,z} \right) $ in $ {R_2} $ then $ \left( {x,z} \right) $ is in $ {R_2} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {b,a} \right) $ is in $ {R_2} $ and $ \left( {a,c} \right) $ is in $ {R_2} $ and also $ \left( {b,c} \right) $ is not in $ {R_2} $ .
Hence, $ {R_2} $ is not transitive.
(iii)
Given $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_3} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is not in $ {R_3} $ .
Hence it is clear that $ {R_3} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_3} $ then $ \left( {y,x} \right) $ should be in $ {R_3} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_3} $ .
But $ \left( {b,a} \right) $ is in $ {R_3} $ .
Hence $ {R_3} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_3} $ and $ \left( {y,z} \right) $ in $ {R_3} $ then $ \left( {x,z} \right) $ is in $ {R_3} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {a,b} \right) $ is in $ {R_3} $ and $ \left( {b,c} \right) $ is in $ {R_3} $ and also $ \left( {a,c} \right) $ is not in $ {R_1} $ .
Hence, $ {R_3} $ is not transitive.
Note: Equivalence relation is expressed as the relation among elements of a particular set that could be transitive, reflexive or symmetric. To prove any equivalence relation, first we have to prove that it is reflexive relation, symmetric relation and transitive relation.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Why is there a time difference of about 5 hours between class 10 social science CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

