
Three relations $ {R_1} $ , $ {R_2} $ and $ {R_3} $ are defined on set $ A = \left\{ {a,b,c} \right\} $ as follows:
I. $ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $
II. $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $
III. $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Discuss each of them from the point of view of being reflexive, symmetric and transitive.
Answer
587.7k+ views
Hint: For each problem to find reflexive need to have $ \left( {a,a} \right) $ that is same type of elements should be there and the condition to find whether the set is symmetric is that if $ a $ is related to $ b $ and $ b $ is related to $ a $ . If $ a $ related to $ b $ and $ b $ related to $ c $ then $ a $ related to $ c $ is the condition for transitive.
Complete step-by-step answer:
The set A is $ A = \left\{ {a,b,c} \right\} $ .
(i)
Given
$ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_1} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
We know that $ \left( {a,a} \right) $ , $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ is in $ {R_1} $ .
Hence, it is clear that $ {R_1} $ is reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_1} $ then $ \left( {y,x} \right) $ should be in $ {R_1} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_1} $ but $ \left( {b,a} \right) $ is not in $ {R_1} $ .
Hence, we can say that $ {R_1} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_1} $ and $ \left( {y,z} \right) $ in $ {R_1} $ then $ \left( {x,z} \right) $ is in $ {R_1} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here, we know $ \left( {a,b} \right) $ is in $ {R_1} $ and $ \left( {b,c} \right) $ is in $ {R_1} $ and also $ \left( {a,c} \right) $ is also in $ {R_1} $ .
Hence, $ {R_1} $ is transitive.
(ii)
Given $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_2} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is in $ {R_2} $ .
But $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ are not in $ {R_2} $
Hence it is clear that $ {R_2} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_2} $ then $ \left( {y,x} \right) $ should be in $ {R_2} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {b,a} \right) $ is in $ {R_2} $ .
But $ \left( {a,b} \right) $ is not in $ {R_2} $ .
Hence $ {R_2} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_2} $ and $ \left( {y,z} \right) $ in $ {R_2} $ then $ \left( {x,z} \right) $ is in $ {R_2} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {b,a} \right) $ is in $ {R_2} $ and $ \left( {a,c} \right) $ is in $ {R_2} $ and also $ \left( {b,c} \right) $ is not in $ {R_2} $ .
Hence, $ {R_2} $ is not transitive.
(iii)
Given $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_3} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is not in $ {R_3} $ .
Hence it is clear that $ {R_3} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_3} $ then $ \left( {y,x} \right) $ should be in $ {R_3} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_3} $ .
But $ \left( {b,a} \right) $ is in $ {R_3} $ .
Hence $ {R_3} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_3} $ and $ \left( {y,z} \right) $ in $ {R_3} $ then $ \left( {x,z} \right) $ is in $ {R_3} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {a,b} \right) $ is in $ {R_3} $ and $ \left( {b,c} \right) $ is in $ {R_3} $ and also $ \left( {a,c} \right) $ is not in $ {R_1} $ .
Hence, $ {R_3} $ is not transitive.
Note: Equivalence relation is expressed as the relation among elements of a particular set that could be transitive, reflexive or symmetric. To prove any equivalence relation, first we have to prove that it is reflexive relation, symmetric relation and transitive relation.
Complete step-by-step answer:
The set A is $ A = \left\{ {a,b,c} \right\} $ .
(i)
Given
$ {R_1} = \left\{ {\left( {a,a} \right),\left( {a,b} \right),\left( {a,c} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_1} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
We know that $ \left( {a,a} \right) $ , $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ is in $ {R_1} $ .
Hence, it is clear that $ {R_1} $ is reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_1} $ then $ \left( {y,x} \right) $ should be in $ {R_1} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_1} $ but $ \left( {b,a} \right) $ is not in $ {R_1} $ .
Hence, we can say that $ {R_1} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_1} $ and $ \left( {y,z} \right) $ in $ {R_1} $ then $ \left( {x,z} \right) $ is in $ {R_1} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here, we know $ \left( {a,b} \right) $ is in $ {R_1} $ and $ \left( {b,c} \right) $ is in $ {R_1} $ and also $ \left( {a,c} \right) $ is also in $ {R_1} $ .
Hence, $ {R_1} $ is transitive.
(ii)
Given $ {R_2} = \left\{ {\left( {a,a} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right)} \right\} $ .
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_2} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is in $ {R_2} $ .
But $ \left( {b,b} \right) $ and $ \left( {c,c} \right) $ are not in $ {R_2} $
Hence it is clear that $ {R_2} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_2} $ then $ \left( {y,x} \right) $ should be in $ {R_2} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {b,a} \right) $ is in $ {R_2} $ .
But $ \left( {a,b} \right) $ is not in $ {R_2} $ .
Hence $ {R_2} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_2} $ and $ \left( {y,z} \right) $ in $ {R_2} $ then $ \left( {x,z} \right) $ is in $ {R_2} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {b,a} \right) $ is in $ {R_2} $ and $ \left( {a,c} \right) $ is in $ {R_2} $ and also $ \left( {b,c} \right) $ is not in $ {R_2} $ .
Hence, $ {R_2} $ is not transitive.
(iii)
Given $ {R_3} = \left\{ {\left( {a,b} \right),\left( {b,c} \right),\left( {c,a} \right)} \right\} $
Reflexive:
To find the given set is reflexive then if $ \left( {x,x} \right) $ is in $ {R_3} $ where $ x $ is in $ \left\{ {a,b,c} \right\} $ .
Given $ \left( {a,a} \right) $ is not in $ {R_3} $ .
Hence it is clear that $ {R_3} $ is not reflexive.
Symmetric:
To find the given set is symmetric then if $ \left( {x,y} \right) $ is in $ {R_3} $ then $ \left( {y,x} \right) $ should be in $ {R_3} $ where $ y,x $ belongs to set $ \left\{ {a,b,c} \right\} $ .
It is known that $ \left( {a,b} \right) $ is in $ {R_3} $ .
But $ \left( {b,a} \right) $ is in $ {R_3} $ .
Hence $ {R_3} $ is not symmetric.
Transitive:
To find the given set is transitive then if $ \left( {x,y} \right) $ is in $ {R_3} $ and $ \left( {y,z} \right) $ in $ {R_3} $ then $ \left( {x,z} \right) $ is in $ {R_3} $ where $ x,y \in \left\{ {a,b,c} \right\} $ .
Here $ \left( {a,b} \right) $ is in $ {R_3} $ and $ \left( {b,c} \right) $ is in $ {R_3} $ and also $ \left( {a,c} \right) $ is not in $ {R_1} $ .
Hence, $ {R_3} $ is not transitive.
Note: Equivalence relation is expressed as the relation among elements of a particular set that could be transitive, reflexive or symmetric. To prove any equivalence relation, first we have to prove that it is reflexive relation, symmetric relation and transitive relation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

