
There is a polynomial function given in which if $ f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}+{{x}^{3}}+1 $ and $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ , $ \alpha $ is a constant, the value of $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ is equal to:
Note: consider 8 in radians.
(a) $ \alpha $
(b) $ \alpha -2 $
(c) $ \alpha +2 $
(d) $ 2-\alpha $
Answer
598.5k+ views
Hint: First of all convert 8 which is in radians to degrees then the angle in degrees will be 458.36. The angle that we have got in degree lie in second quadrant so we can write $ \sin 8 $ as $ \sin \left( 3\pi -8 \right) $ and we can write $ \tan 8 $ as $ -\tan \left( 3\pi -8 \right) $ . The value of $ {{\sin }^{-1}}\left( \sin \left( 3\pi -8 \right) \right) $ will be $ 3\pi -8 $ and the value of $ {{\tan }^{-1}}\left( -\tan \left( 3\pi -8 \right) \right) $ will be $ -\left( 3\pi -8 \right) $ . It is given that $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ then we can write it as $ f\left( 3\pi -8 \right)=\alpha $ and we can write $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ as $ f\left( -\left( 3\pi -8 \right) \right) $ . Let us assume $ 3\pi -8 $ as t then substitute t in $ f\left( x \right) $ and –t in $ f\left( x \right) $ and add them. After adding $ f\left( t \right)\And f\left( -t \right) $ you will get 2 then substitute $ f\left( t \right) $ as $ \alpha $ then you will get the value of $ f\left( -t \right) $ or $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ .
Complete step-by-step answer:
A polynomial function given in the question is:
$ f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}+{{x}^{3}}+1 $
It is also given that $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ and we are asked to find the value of $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ .
As the angle of sine is given in radians which is 8 radians so converting the radians into degrees we get,
$ 8\left( \dfrac{{{180}^{0}}}{\pi } \right) $
$ \begin{align}
& =8\left( \dfrac{{{180}^{0}}}{3.14} \right) \\
& ={{458.36}^{0}} \\
\end{align} $
The angle that we have calculated above lies in second quadrant so we can write sine as:
$ \sin 8=\sin \left( 3\pi -8 \right) $
Taking inverse of sine on both the sides we get,
$ \begin{align}
& {{\sin }^{-1}}\left( \sin 8 \right)={{\sin }^{-1}}\left( \sin \left( 3\pi -8 \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \sin 8 \right)=3\pi -8 \\
\end{align} $
Similarly, we can write $ \tan 8 $ as:
$ \tan 8=-\tan \left( 3\pi -8 \right) $
Taking inverse of tan on both the sides we get,
$ \begin{align}
& {{\tan }^{-1}}\tan 8={{\tan }^{-1}}\left( -\tan \left( 3\pi -8 \right) \right) \\
& \Rightarrow {{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) \\
\end{align} $
It is given that:
$ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $
Substituting $ {{\sin }^{-1}}\left( \sin 8 \right) $ as $ 3\pi -8 $ in the above equation we get,
$ f\left( 3\pi -8 \right)=\alpha $ ……… eq. (1)
Substituting $ {{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) $ in $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ we get,
$ f\left( -\left( 3\pi -8 \right) \right) $
If we assume $ f\left( 3\pi -8 \right) $ as $ f\left( t \right) $ then $ f\left( -\left( 3\pi -8 \right) \right) $ will be $ f\left( -t \right) $ . Now, substituting the value of “t” in place of x in $ f\left( x \right) $ we get,
$ f\left( t \right)={{t}^{11}}+{{t}^{9}}-{{t}^{7}}+{{t}^{3}}+1 $ …………. Eq. (2)
Substituting the value of –t in place of x in $ f\left( x \right) $ we get,
$ f\left( -t \right)=-{{t}^{11}}-{{t}^{9}}+{{t}^{7}}-{{t}^{3}}+1 $ ………. Eq. (3)
Adding eq. (1) and eq. (2) we get,
$ f\left( t \right)+f\left( -t \right)=2 $
Now, replacing t with $ 3\pi -8 $ in the above equation we get,
$ f\left( 3\pi -8 \right)+f\left( -\left( 3\pi -t \right) \right)=2 $
Using the relation in eq. (2) and substituting in the above equation we get,
$ \begin{align}
& \alpha +f\left( -\left( 3\pi -8 \right) \right)=2 \\
& \Rightarrow f\left( -\left( 3\pi -8 \right) \right)=2-\alpha \\
\end{align} $
Hence, the correct option (d).
Note: You might think of solving this problem as follows:
In the function $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ , the value of $ {{\sin }^{-1}}\left( \sin 8 \right) $ is 8 then $ f\left( 8 \right)=\alpha $ We have to find the value of the function $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ , in this function the value of $ {{\tan }^{-1}}\left( \tan 8 \right) $ is 8 so the value of this function $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ is $ f\left( 8 \right) $ and which is equal to $ \alpha $ .
In the above solution, the wrong step is that we cannot write $ {{\tan }^{-1}}\left( \tan 8 \right) $ as 8 because the angle given us in radians and as we have shown above that this angle is of $ {{458.36}^{0}} $ which lies in the second quadrant so basically we should write $ \tan 8 $ as $ -\tan \left( 3\pi -8 \right) $ and then proceed.
Complete step-by-step answer:
A polynomial function given in the question is:
$ f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}+{{x}^{3}}+1 $
It is also given that $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ and we are asked to find the value of $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ .
As the angle of sine is given in radians which is 8 radians so converting the radians into degrees we get,
$ 8\left( \dfrac{{{180}^{0}}}{\pi } \right) $
$ \begin{align}
& =8\left( \dfrac{{{180}^{0}}}{3.14} \right) \\
& ={{458.36}^{0}} \\
\end{align} $
The angle that we have calculated above lies in second quadrant so we can write sine as:
$ \sin 8=\sin \left( 3\pi -8 \right) $
Taking inverse of sine on both the sides we get,
$ \begin{align}
& {{\sin }^{-1}}\left( \sin 8 \right)={{\sin }^{-1}}\left( \sin \left( 3\pi -8 \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \sin 8 \right)=3\pi -8 \\
\end{align} $
Similarly, we can write $ \tan 8 $ as:
$ \tan 8=-\tan \left( 3\pi -8 \right) $
Taking inverse of tan on both the sides we get,
$ \begin{align}
& {{\tan }^{-1}}\tan 8={{\tan }^{-1}}\left( -\tan \left( 3\pi -8 \right) \right) \\
& \Rightarrow {{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) \\
\end{align} $
It is given that:
$ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $
Substituting $ {{\sin }^{-1}}\left( \sin 8 \right) $ as $ 3\pi -8 $ in the above equation we get,
$ f\left( 3\pi -8 \right)=\alpha $ ……… eq. (1)
Substituting $ {{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) $ in $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ we get,
$ f\left( -\left( 3\pi -8 \right) \right) $
If we assume $ f\left( 3\pi -8 \right) $ as $ f\left( t \right) $ then $ f\left( -\left( 3\pi -8 \right) \right) $ will be $ f\left( -t \right) $ . Now, substituting the value of “t” in place of x in $ f\left( x \right) $ we get,
$ f\left( t \right)={{t}^{11}}+{{t}^{9}}-{{t}^{7}}+{{t}^{3}}+1 $ …………. Eq. (2)
Substituting the value of –t in place of x in $ f\left( x \right) $ we get,
$ f\left( -t \right)=-{{t}^{11}}-{{t}^{9}}+{{t}^{7}}-{{t}^{3}}+1 $ ………. Eq. (3)
Adding eq. (1) and eq. (2) we get,
$ f\left( t \right)+f\left( -t \right)=2 $
Now, replacing t with $ 3\pi -8 $ in the above equation we get,
$ f\left( 3\pi -8 \right)+f\left( -\left( 3\pi -t \right) \right)=2 $
Using the relation in eq. (2) and substituting in the above equation we get,
$ \begin{align}
& \alpha +f\left( -\left( 3\pi -8 \right) \right)=2 \\
& \Rightarrow f\left( -\left( 3\pi -8 \right) \right)=2-\alpha \\
\end{align} $
Hence, the correct option (d).
Note: You might think of solving this problem as follows:
In the function $ f\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha $ , the value of $ {{\sin }^{-1}}\left( \sin 8 \right) $ is 8 then $ f\left( 8 \right)=\alpha $ We have to find the value of the function $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ , in this function the value of $ {{\tan }^{-1}}\left( \tan 8 \right) $ is 8 so the value of this function $ f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) $ is $ f\left( 8 \right) $ and which is equal to $ \alpha $ .
In the above solution, the wrong step is that we cannot write $ {{\tan }^{-1}}\left( \tan 8 \right) $ as 8 because the angle given us in radians and as we have shown above that this angle is of $ {{458.36}^{0}} $ which lies in the second quadrant so basically we should write $ \tan 8 $ as $ -\tan \left( 3\pi -8 \right) $ and then proceed.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

