
There are n A.P’s whose common differences are 1, 2, 3, ……, n respectively, the first term of each being unity. Prove that sum of their \[{{n}^{th}}\] term is \[\dfrac{1}{2}n\left( {{n}^{2}}+1 \right)\].
Answer
576k+ views
Hint: Write the terms for each A.P. and find their \[{{n}^{th}}\] terms by using the formula: - \[{{T}_{n}}=a+\left( n-1 \right)d\], where \[{{T}_{n}}\] is the \[{{n}^{th}}\] term, ‘a’ is the first term, ‘d’ is the common difference and ‘n’ is the number of terms. Form a general sequence with the \[{{n}^{th}}\] term of each A.P. and add them using the formula: - \[{{S}_{n}}=\dfrac{n}{2}\times \] (first term + last term). Here, \[{{S}_{n}}\] is the sum of ‘n’ terms of an A.P.
Complete step by step answer:
Here, we have been provided with ‘n’ A.P’s whose common differences are 1, 2, 3, ….., n respectively and the first term of each A.P. is unity that means 1.
Let us assume the common difference for the A.P’s as \[{{d}_{1}},{{d}_{2}},{{d}_{3}},......,{{d}_{n}}\] respectively and \[{{n}^{th}}\] term for the A.P’s as \[{{T}_{{{n}_{1}}}},{{T}_{{{n}_{2}}}},{{T}_{{{n}_{3}}}},......,{{T}_{{{n}_{n}}}}\]. So, we have,
For A.P. 1, the terms can be written as: -
1, 2, 3, ……., n. Here, the \[{{n}^{th}}\] term is n. So, \[{{T}_{{{n}_{1}}}}=n\].
For A.P. 2, the terms can be written as: -
1, 3, 5, ……. upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{2}}}}=a+\left( n-1 \right){{d}_{2}} \\
& \Rightarrow {{T}_{{{n}_{2}}}}=1+\left( n-1 \right)\times 2 \\
& \Rightarrow {{T}_{{{n}_{2}}}}=2n-1 \\
\end{align}\]
For A.P. 3, the terms can be written as: -
1, 4, 7, 10, …. upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{3}}}}=a+\left( n-1 \right){{d}_{3}} \\
& \Rightarrow {{T}_{{{n}_{3}}}}=1+\left( n-1 \right)\times 3 \\
& \Rightarrow {{T}_{{{n}_{3}}}}=3n-2 \\
\end{align}\]
For A.P. 4, the terms can be written as: -
1, 5, 9, 13, ……… upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{4}}}}=a+\left( n-1 \right){{d}_{4}} \\
& \Rightarrow {{T}_{{{n}_{4}}}}=1+\left( n-1 \right)\times 4 \\
& \Rightarrow {{T}_{{{n}_{4}}}}=4n-3 \\
\end{align}\]
Similarly, on observing the pattern we can conclude the following expressions: -
\[\Rightarrow {{T}_{{{n}_{5}}}}=5n-4,{{T}_{{{n}_{6}}}}=6n-5,.......,{{T}_{{{n}_{n}}}}=n.n-\left( n-1 \right)\]
Now, taking the sum of these \[{{n}^{th}}\] terms of all the A.P., we get,
\[\Rightarrow S={{T}_{{{n}_{1}}}}+{{T}_{{{n}_{2}}}}+{{T}_{{{n}_{3}}}}+......+{{T}_{{{n}_{n}}}}\]
Here, S is the required sum.
\[\Rightarrow S=n+\left( 2n-1 \right)+\left( 3n-2 \right)+\left( 4n-3 \right)+.....+\left( n.n-\left( n-1 \right) \right)\]
The above expression can be simplified as: -
\[\begin{align}
& \Rightarrow S=\left( n+2n+3n+4n+.....+n.n \right)-\left( 1+2+3+4+....+\left( n-1 \right) \right) \\
& \Rightarrow S=n\left( 1+2+3+4+.....+n \right)-\left( 1+2+3+4+....+\left( n-1 \right) \right) \\
\end{align}\]
Now, in the above expression, first term contains n terms in A.P. and second term contains (n - 1) terms in A.P., so applying the formula for sum of n terms and (n - 1) terms in an A. P, we get,
\[\Rightarrow S=n\times {{S}_{n}}-{{S}_{n-1}}\]
Here, \[{{S}_{n}}\] and \[{{S}_{n-1}}\] denotes the sum of ‘n’ and (n - 1) terms respectively, so we have,
\[\begin{align}
& \Rightarrow S=n\times \dfrac{n}{2}\left[ 1+n \right]-\dfrac{n-1}{2}\left[ 1+\left( n-1 \right) \right] \\
& \Rightarrow S=\dfrac{{{n}^{2}}}{2}\left( n+1 \right)-\dfrac{n-1}{2}\times n \\
& \Rightarrow S=\dfrac{n}{2}\left[ n\left( n+1 \right)-\left( n-1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ {{n}^{2}}+n-n+1 \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ {{n}^{2}}+1 \right] \\
\end{align}\]
Hence proved
Note: One may note that it is very important to form a general sequence for the \[{{n}^{th}}\] terms of all the A.P.’s. If we will not form any sequence then we will get confused in the terms and we will not be able to apply the formula for the sum of ‘n’ terms of an A.P. We have started all the A.P’s with 1 because it was given that the first term of all the A.P’s are 1.
Complete step by step answer:
Here, we have been provided with ‘n’ A.P’s whose common differences are 1, 2, 3, ….., n respectively and the first term of each A.P. is unity that means 1.
Let us assume the common difference for the A.P’s as \[{{d}_{1}},{{d}_{2}},{{d}_{3}},......,{{d}_{n}}\] respectively and \[{{n}^{th}}\] term for the A.P’s as \[{{T}_{{{n}_{1}}}},{{T}_{{{n}_{2}}}},{{T}_{{{n}_{3}}}},......,{{T}_{{{n}_{n}}}}\]. So, we have,
For A.P. 1, the terms can be written as: -
1, 2, 3, ……., n. Here, the \[{{n}^{th}}\] term is n. So, \[{{T}_{{{n}_{1}}}}=n\].
For A.P. 2, the terms can be written as: -
1, 3, 5, ……. upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{2}}}}=a+\left( n-1 \right){{d}_{2}} \\
& \Rightarrow {{T}_{{{n}_{2}}}}=1+\left( n-1 \right)\times 2 \\
& \Rightarrow {{T}_{{{n}_{2}}}}=2n-1 \\
\end{align}\]
For A.P. 3, the terms can be written as: -
1, 4, 7, 10, …. upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{3}}}}=a+\left( n-1 \right){{d}_{3}} \\
& \Rightarrow {{T}_{{{n}_{3}}}}=1+\left( n-1 \right)\times 3 \\
& \Rightarrow {{T}_{{{n}_{3}}}}=3n-2 \\
\end{align}\]
For A.P. 4, the terms can be written as: -
1, 5, 9, 13, ……… upto n terms. So, applying the formula for \[{{n}^{th}}\] term, we get,
\[\begin{align}
& \Rightarrow {{T}_{{{n}_{4}}}}=a+\left( n-1 \right){{d}_{4}} \\
& \Rightarrow {{T}_{{{n}_{4}}}}=1+\left( n-1 \right)\times 4 \\
& \Rightarrow {{T}_{{{n}_{4}}}}=4n-3 \\
\end{align}\]
Similarly, on observing the pattern we can conclude the following expressions: -
\[\Rightarrow {{T}_{{{n}_{5}}}}=5n-4,{{T}_{{{n}_{6}}}}=6n-5,.......,{{T}_{{{n}_{n}}}}=n.n-\left( n-1 \right)\]
Now, taking the sum of these \[{{n}^{th}}\] terms of all the A.P., we get,
\[\Rightarrow S={{T}_{{{n}_{1}}}}+{{T}_{{{n}_{2}}}}+{{T}_{{{n}_{3}}}}+......+{{T}_{{{n}_{n}}}}\]
Here, S is the required sum.
\[\Rightarrow S=n+\left( 2n-1 \right)+\left( 3n-2 \right)+\left( 4n-3 \right)+.....+\left( n.n-\left( n-1 \right) \right)\]
The above expression can be simplified as: -
\[\begin{align}
& \Rightarrow S=\left( n+2n+3n+4n+.....+n.n \right)-\left( 1+2+3+4+....+\left( n-1 \right) \right) \\
& \Rightarrow S=n\left( 1+2+3+4+.....+n \right)-\left( 1+2+3+4+....+\left( n-1 \right) \right) \\
\end{align}\]
Now, in the above expression, first term contains n terms in A.P. and second term contains (n - 1) terms in A.P., so applying the formula for sum of n terms and (n - 1) terms in an A. P, we get,
\[\Rightarrow S=n\times {{S}_{n}}-{{S}_{n-1}}\]
Here, \[{{S}_{n}}\] and \[{{S}_{n-1}}\] denotes the sum of ‘n’ and (n - 1) terms respectively, so we have,
\[\begin{align}
& \Rightarrow S=n\times \dfrac{n}{2}\left[ 1+n \right]-\dfrac{n-1}{2}\left[ 1+\left( n-1 \right) \right] \\
& \Rightarrow S=\dfrac{{{n}^{2}}}{2}\left( n+1 \right)-\dfrac{n-1}{2}\times n \\
& \Rightarrow S=\dfrac{n}{2}\left[ n\left( n+1 \right)-\left( n-1 \right) \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ {{n}^{2}}+n-n+1 \right] \\
& \Rightarrow S=\dfrac{n}{2}\left[ {{n}^{2}}+1 \right] \\
\end{align}\]
Hence proved
Note: One may note that it is very important to form a general sequence for the \[{{n}^{th}}\] terms of all the A.P.’s. If we will not form any sequence then we will get confused in the terms and we will not be able to apply the formula for the sum of ‘n’ terms of an A.P. We have started all the A.P’s with 1 because it was given that the first term of all the A.P’s are 1.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

