
The wavelength associated with a moving particle depends upon the power \[p\]of its mass\[m\],\[{q^{th}}\] power of its velocity \[v\] , and \[{r^{th}}\] power of Planck's constant \[h\]. Then the correct set of values of\[p,q\;\] and \[r\;\] is:-
A. \[p = 1,q = - 1,r = - 1\]
B. \[\;p = 1,q = 1,r = 1\]
C. \[\;p = - 1,q = - 1,r = - 1\]
D. \[\;p = - 1,q = - 1,r = 1\]
Answer
435k+ views
Hint: Dimensional analysis is defined as the study of the relationship between the physical quantities with the help of the dimensions and units. The principle of homogeneity is the principle used in dimensional analysis. It states that both sides of the dimensional equation should contain terms that have the same dimensions. This principle is very useful because it can help us to convert the units from one form to another.
Complete step by step solution:
Given that the wavelength associated with the moving particle depends upon its mass, velocity and Planck's constant. We can write this mathematically as,
\[\lambda \propto mvh\]
The wavelength is associated with some power of each term in the R.H.S
So we can write that as,
\[\lambda \propto {m^p}{v^q}{h^r}\]
Removing the proportionality constant and replacing it with a term. Let the term be
\[\lambda = K{m^p}{v^q}{h^r}\]
Now we can write the dimension of each term.
Dimension of wavelength, \[\lambda = \left[ L \right]\]
Dimension of mass, \[m = \left[ M \right]\]
Dimension of velocity,\[v = \left[ {L{T^{ - 1}}} \right]\]
Dimension of Planck constant, \[h = \left[ {M{L^2}{T^{ - 1}}} \right]\]
Now applying the homogeneity principle and equating the dimensions of both the sides of the equations we get,
\[[L] = K{[M]^p}{[L{T^{ - 1}}]^q}{[M{L^2}{T^{ - 1}}]^r}\]
\[[L] = K{[M]^{(p + r)}}{[L]^{(q + 2r)}}{[T]^{(q - r)}}\]
Comparing the powers on both sides,
\[p + r = 0\]
\[q + 2r = 1\]
\[ - q - r = 0\]
Thus we get
\[p = - 1;q = - 1;r = 1\]
Therefore the correct option is D.
Note:
Dimensional analysis can also be called the Factor Label Method or Unit Factor Method. Because we use these conversion factors to get the same units. Let us understand this using an example. Let us convert \[5{\text{ }}km\]to \[m\]. We know that \[1000{\text{ }}meters\] is equal \[1km\]. Therefore,
\[5km = 5 \times 1000m = 5000meters\]. Hence here the conversion factor is \[1000{\text{ }}meters\]
Complete step by step solution:
Given that the wavelength associated with the moving particle depends upon its mass, velocity and Planck's constant. We can write this mathematically as,
\[\lambda \propto mvh\]
The wavelength is associated with some power of each term in the R.H.S
So we can write that as,
\[\lambda \propto {m^p}{v^q}{h^r}\]
Removing the proportionality constant and replacing it with a term. Let the term be
\[\lambda = K{m^p}{v^q}{h^r}\]
Now we can write the dimension of each term.
Dimension of wavelength, \[\lambda = \left[ L \right]\]
Dimension of mass, \[m = \left[ M \right]\]
Dimension of velocity,\[v = \left[ {L{T^{ - 1}}} \right]\]
Dimension of Planck constant, \[h = \left[ {M{L^2}{T^{ - 1}}} \right]\]
Now applying the homogeneity principle and equating the dimensions of both the sides of the equations we get,
\[[L] = K{[M]^p}{[L{T^{ - 1}}]^q}{[M{L^2}{T^{ - 1}}]^r}\]
\[[L] = K{[M]^{(p + r)}}{[L]^{(q + 2r)}}{[T]^{(q - r)}}\]
Comparing the powers on both sides,
\[p + r = 0\]
\[q + 2r = 1\]
\[ - q - r = 0\]
Thus we get
\[p = - 1;q = - 1;r = 1\]
Therefore the correct option is D.
Note:
Dimensional analysis can also be called the Factor Label Method or Unit Factor Method. Because we use these conversion factors to get the same units. Let us understand this using an example. Let us convert \[5{\text{ }}km\]to \[m\]. We know that \[1000{\text{ }}meters\] is equal \[1km\]. Therefore,
\[5km = 5 \times 1000m = 5000meters\]. Hence here the conversion factor is \[1000{\text{ }}meters\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
