
The vertices of an equilateral triangle are $\left( 3,2 \right),\left( 3,-2 \right),\left( 0,h \right)$ then $h=$
$\begin{align}
& \text{A}\text{. }\sqrt{3} \\
& \text{B}\text{. }\sqrt{2}\pm \sqrt{27} \\
& \text{C}\text{. 2-}\sqrt{27} \\
& \text{D}\text{. 2+}\sqrt{27} \\
\end{align}$
Answer
569.1k+ views
Hint: First we draw a diagram of equilateral triangle and assume that three vertices of triangle are$\left( 3,2 \right),\left( 3,-2 \right),\left( 0,h \right)$. Then, we use the distance formula to calculate the length of the side of a triangle. Now, we know that the equilateral triangle has all sides equal so we use the concept to obtain the answer.
Complete step by step answer:
The distance formula used is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Where, ${{x}_{2}},{{x}_{1}},{{y}_{2}},{{y}_{1}}$ are coordinates of vertices.
We have given that $\left( 3,2 \right),\left( 3,-2 \right),\left( 0,h \right)$ are vertices of an equilateral triangle.
We have to find the value of $h$.
Let us assume $ABC$ is an equilateral triangle and $A\left( 3,2 \right),B\left( 3,-2 \right),C\left( 0,h \right)$ are three vertices.
Now, we know that the length of all sides of an equilateral tringle is equal. $AB=BC=AC$
Also, length of side is calculated by finding the distance between two vertices. The distance is calculated by using the formula $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Where, ${{x}_{2}},{{x}_{1}},{{y}_{2}},{{y}_{1}}$ are coordinates of vertices.
Now, the length of \[AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow AB=\sqrt{{{\left( -3-3 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}} \\
& \Rightarrow AB=\sqrt{{{\left( -6 \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow AB=6 \\
\end{align}$
Now, the length of \[BC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow BC=\sqrt{{{\left( 0-\left( -3 \right) \right)}^{2}}+{{\left( h-2 \right)}^{2}}} \\
& \Rightarrow BC=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( h-2 \right)}^{2}}} \\
& \Rightarrow BC=\sqrt{9+{{\left( h-2 \right)}^{2}}} \\
\end{align}$
Now, the length of \[CA=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow CA=\sqrt{{{\left( 3-0 \right)}^{2}}+{{\left( 2-h \right)}^{2}}} \\
& \Rightarrow CA=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2-h \right)}^{2}}} \\
& \Rightarrow CA=\sqrt{9+{{\left( 2-h \right)}^{2}}} \\
\end{align}$
Now, we know that $AB=BC=AC$, so $\sqrt{9+{{\left( h-2 \right)}^{2}}}=\sqrt{9+{{\left( 2-h \right)}^{2}}}=6$
Or \[\sqrt{9+{{\left( h-2 \right)}^{2}}}=6\] and $\sqrt{9+{{\left( 2-h \right)}^{2}}}=6$
Let us first consider \[\sqrt{9+{{\left( h-2 \right)}^{2}}}=6\]
Now, simplifying further, we get
\[\begin{align}
& \sqrt{9+{{h}^{2}}+4-4h}=6 \\
& \sqrt{{{h}^{2}}-4h+13}=6 \\
& {{h}^{2}}-4h+13=36 \\
& {{h}^{2}}-4h=36-13 \\
& {{h}^{2}}-4h=23 \\
& {{h}^{2}}-4h-23=0 \\
\end{align}\]
Now, let us solve the above equation by using the formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, we have
\[\begin{align}
& \Rightarrow h=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times \left( -23 \right)}}{2\times 1} \\
& \Rightarrow h=\dfrac{4\pm \sqrt{16+92}}{2} \\
& \Rightarrow h=\dfrac{4\pm \sqrt{108}}{2} \\
& \Rightarrow h=\dfrac{4\pm 2\sqrt{27}}{2} \\
& \Rightarrow h=\dfrac{2\left( 2\pm \sqrt{27} \right)}{2} \\
& \Rightarrow h=2\pm \sqrt{27} \\
\end{align}\]
So, the value of $h$ is $2\pm \sqrt{27}$.
Now, since it is given in the question that h < 0, we have to choose the value of h as $2-\sqrt{27}$ .
So, the correct answer is “Option A”.
Note: The key concept is to use the property of equilateral triangle to solve the question and use the distance formula to calculate the lengths of the sides of an equilateral triangle. The equation ${{h}^{2}}+4h-3=0$ can be solved using the factorization method to find the value of $h$.
Complete step by step answer:
The distance formula used is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Where, ${{x}_{2}},{{x}_{1}},{{y}_{2}},{{y}_{1}}$ are coordinates of vertices.
We have given that $\left( 3,2 \right),\left( 3,-2 \right),\left( 0,h \right)$ are vertices of an equilateral triangle.
We have to find the value of $h$.
Let us assume $ABC$ is an equilateral triangle and $A\left( 3,2 \right),B\left( 3,-2 \right),C\left( 0,h \right)$ are three vertices.
Now, we know that the length of all sides of an equilateral tringle is equal. $AB=BC=AC$
Also, length of side is calculated by finding the distance between two vertices. The distance is calculated by using the formula $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Where, ${{x}_{2}},{{x}_{1}},{{y}_{2}},{{y}_{1}}$ are coordinates of vertices.
Now, the length of \[AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow AB=\sqrt{{{\left( -3-3 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}} \\
& \Rightarrow AB=\sqrt{{{\left( -6 \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& \Rightarrow AB=6 \\
\end{align}$
Now, the length of \[BC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow BC=\sqrt{{{\left( 0-\left( -3 \right) \right)}^{2}}+{{\left( h-2 \right)}^{2}}} \\
& \Rightarrow BC=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( h-2 \right)}^{2}}} \\
& \Rightarrow BC=\sqrt{9+{{\left( h-2 \right)}^{2}}} \\
\end{align}$
Now, the length of \[CA=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
$\begin{align}
& \Rightarrow CA=\sqrt{{{\left( 3-0 \right)}^{2}}+{{\left( 2-h \right)}^{2}}} \\
& \Rightarrow CA=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2-h \right)}^{2}}} \\
& \Rightarrow CA=\sqrt{9+{{\left( 2-h \right)}^{2}}} \\
\end{align}$
Now, we know that $AB=BC=AC$, so $\sqrt{9+{{\left( h-2 \right)}^{2}}}=\sqrt{9+{{\left( 2-h \right)}^{2}}}=6$
Or \[\sqrt{9+{{\left( h-2 \right)}^{2}}}=6\] and $\sqrt{9+{{\left( 2-h \right)}^{2}}}=6$
Let us first consider \[\sqrt{9+{{\left( h-2 \right)}^{2}}}=6\]
Now, simplifying further, we get
\[\begin{align}
& \sqrt{9+{{h}^{2}}+4-4h}=6 \\
& \sqrt{{{h}^{2}}-4h+13}=6 \\
& {{h}^{2}}-4h+13=36 \\
& {{h}^{2}}-4h=36-13 \\
& {{h}^{2}}-4h=23 \\
& {{h}^{2}}-4h-23=0 \\
\end{align}\]
Now, let us solve the above equation by using the formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, we have
\[\begin{align}
& \Rightarrow h=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times \left( -23 \right)}}{2\times 1} \\
& \Rightarrow h=\dfrac{4\pm \sqrt{16+92}}{2} \\
& \Rightarrow h=\dfrac{4\pm \sqrt{108}}{2} \\
& \Rightarrow h=\dfrac{4\pm 2\sqrt{27}}{2} \\
& \Rightarrow h=\dfrac{2\left( 2\pm \sqrt{27} \right)}{2} \\
& \Rightarrow h=2\pm \sqrt{27} \\
\end{align}\]
So, the value of $h$ is $2\pm \sqrt{27}$.
Now, since it is given in the question that h < 0, we have to choose the value of h as $2-\sqrt{27}$ .
So, the correct answer is “Option A”.
Note: The key concept is to use the property of equilateral triangle to solve the question and use the distance formula to calculate the lengths of the sides of an equilateral triangle. The equation ${{h}^{2}}+4h-3=0$ can be solved using the factorization method to find the value of $h$.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

