
The vertices of a triangle are $\left( {1,\sqrt 3 } \right),\left( {2\cos \theta ,2\sin \theta } \right)$ and $\left( {2\sin \theta , - 2\cos \theta } \right)$ where $\theta \in R$. The locus of orthocentre of the triangle is
A.${\left( {x - 1} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 4$
B.${\left( {x - 2} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 4$
C.${\left( {x - 1} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 8$
D.${\left( {x - 2} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 8$
Answer
581.4k+ views
Hint: Find the coordinates of circumcentre and centroid of the given triangle. Then use the relation $0G:GH = 1:2$, where $H$ is circumcentre, where $O$ is orthocentre and where $G$ is centroid to find the coordinates of orthocentre. Write the locus in terms of $x$ and $y$.
Complete step-by-step answer:
We are given the coordinates of triangle as $\left( {1,\sqrt 3 } \right),\left( {2\cos \theta ,2\sin \theta } \right)$ and $\left( {2\sin \theta , - 2\cos \theta } \right)$.
Also, each of the coordinates of the triangle satisfies the equation ${x^2} + {y^2} = 4$.
The equation ${x^2} + {y^2} = 4$ represents the equation of the circle.
On comparing the equation of circle, ${x^2} + {y^2} = 4$with the general form of equation, ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 1$ , where $\left( {h,k} \right)$ are the coordinates of centre and $r$is the radius of circle.
Thus, ${x^2} + {y^2} = 4$ represents the equation of circle with origin as centre and radius of 2 units.
Hence, the circumcentre of the triangle is at origin. That is, circumcentre is $O\left( {0,0} \right)$
We will find the centroid of triangle using the formula, $\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)$
Hence, centroid for the given triangle is $G = \left( {\dfrac{{2\cos \theta + 2\sin \theta + 1}}{3},\dfrac{{2\sin \theta - 2\cos \theta + \sqrt 3 }}{3}} \right)$
The relation between circumcentre, orthocentre and centroid of the triangle is given as $0G:GH = 1:2$, where $H$ is circumcentre.
We will find the coordinates of orthocentre $\left( {h,k} \right)$, using the section formula, \[\left( {\dfrac{{m\left( {{x_1}} \right) + n\left( {{x_2}} \right)}}{{m + n}},\dfrac{{m\left( {{y_1}} \right) + n\left( {{y_2}} \right)}}{{m + n}}} \right)\]
$
\dfrac{{2\cos \theta + 2\sin \theta + 1}}{3} = \dfrac{{1\left( h \right) + 2\left( 0 \right)}}{{1 + 2}} = \dfrac{h}{3} \\
\Rightarrow h = 2\cos \theta + 2\sin \theta + 1{\text{ }}\left( 1 \right) \\
$
$
\dfrac{{2\sin \theta - 2\cos \theta + \sqrt 3 }}{3} = \dfrac{{1\left( k \right) + 2\left( 0 \right)}}{{1 + 2}} = \dfrac{k}{3} \\
\Rightarrow k = 2\sin \theta - 2\cos \theta + \sqrt 3 {\text{ }}\left( 2 \right) \\
$
Add equation (1) and (2), to get the value of $\sin \theta $
$
h + k = 2\cos \theta + 2\sin \theta + 1 + 2\sin \theta - 2\cos \theta + \sqrt 3 \\
\Rightarrow h + k = 4\sin \theta + 1 + \sqrt 3 \\
\Rightarrow \sin \theta = \dfrac{{h + k - 1 - \sqrt 3 }}{4}{\text{ }}\left( 3 \right) \\
$
Similarly, subtract equation (1) and (2), to get the value of $\cos \theta $
$
h - k = 2\cos \theta + 2\sin \theta + 1 - 2\sin \theta + 2\cos \theta - \sqrt 3 \\
\Rightarrow h - k = 4\cos \theta + 1 - \sqrt 3 \\
\Rightarrow \cos \theta = \dfrac{{h - k - 1 + \sqrt 3 }}{4}{\text{ }}\left( 4 \right) \\
$
Squaring and adding equation (3) and (4).
$
{\sin ^2}\theta + {\cos ^2}\theta = {\left( {\dfrac{{h + k - 1 - \sqrt 3 }}{4}} \right)^2} + {\left( {\dfrac{{h - k - 1 + \sqrt 3 }}{4}} \right)^2} \\
\Rightarrow 16 = {\left( {h + k - 1 - \sqrt 3 } \right)^2} + {\left( {h - k - 1 + \sqrt 3 } \right)^2} \\
\Rightarrow 16 = {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} + 2\left( {h - 1} \right)\left( {k - \sqrt 3 } \right) + {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} - 2\left( {h - 1} \right)\left( {k - \sqrt 3 } \right) \\
\Rightarrow 16 = 2\left( {{{\left( {h - 1} \right)}^2} + {{\left( {k - \sqrt 3 } \right)}^2}} \right) \\
\Rightarrow {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} = 8 \\
$
Replace $h$ by $x$ and $k$ by $y$ to write the equation of locus of orthocentre.
\[{\left( {x - 1} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 8\]
Hence, option C is correct.
Note: The orthocentre is the intersecting point of all altitudes of the triangle. The centroid in a triangle is the intersecting point of all the medians. The circumcentre is the intersection of all the perpendicular bisectors of a triangle. The relation between orthocentre, circumcentre and centroid is given by, $0G:GH = 1:2$, where $H$ is circumcentre, where $O$ is orthocentre and where $G$ is centroid.
Complete step-by-step answer:
We are given the coordinates of triangle as $\left( {1,\sqrt 3 } \right),\left( {2\cos \theta ,2\sin \theta } \right)$ and $\left( {2\sin \theta , - 2\cos \theta } \right)$.
Also, each of the coordinates of the triangle satisfies the equation ${x^2} + {y^2} = 4$.
The equation ${x^2} + {y^2} = 4$ represents the equation of the circle.
On comparing the equation of circle, ${x^2} + {y^2} = 4$with the general form of equation, ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 1$ , where $\left( {h,k} \right)$ are the coordinates of centre and $r$is the radius of circle.
Thus, ${x^2} + {y^2} = 4$ represents the equation of circle with origin as centre and radius of 2 units.
Hence, the circumcentre of the triangle is at origin. That is, circumcentre is $O\left( {0,0} \right)$
We will find the centroid of triangle using the formula, $\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)$
Hence, centroid for the given triangle is $G = \left( {\dfrac{{2\cos \theta + 2\sin \theta + 1}}{3},\dfrac{{2\sin \theta - 2\cos \theta + \sqrt 3 }}{3}} \right)$
The relation between circumcentre, orthocentre and centroid of the triangle is given as $0G:GH = 1:2$, where $H$ is circumcentre.
We will find the coordinates of orthocentre $\left( {h,k} \right)$, using the section formula, \[\left( {\dfrac{{m\left( {{x_1}} \right) + n\left( {{x_2}} \right)}}{{m + n}},\dfrac{{m\left( {{y_1}} \right) + n\left( {{y_2}} \right)}}{{m + n}}} \right)\]
$
\dfrac{{2\cos \theta + 2\sin \theta + 1}}{3} = \dfrac{{1\left( h \right) + 2\left( 0 \right)}}{{1 + 2}} = \dfrac{h}{3} \\
\Rightarrow h = 2\cos \theta + 2\sin \theta + 1{\text{ }}\left( 1 \right) \\
$
$
\dfrac{{2\sin \theta - 2\cos \theta + \sqrt 3 }}{3} = \dfrac{{1\left( k \right) + 2\left( 0 \right)}}{{1 + 2}} = \dfrac{k}{3} \\
\Rightarrow k = 2\sin \theta - 2\cos \theta + \sqrt 3 {\text{ }}\left( 2 \right) \\
$
Add equation (1) and (2), to get the value of $\sin \theta $
$
h + k = 2\cos \theta + 2\sin \theta + 1 + 2\sin \theta - 2\cos \theta + \sqrt 3 \\
\Rightarrow h + k = 4\sin \theta + 1 + \sqrt 3 \\
\Rightarrow \sin \theta = \dfrac{{h + k - 1 - \sqrt 3 }}{4}{\text{ }}\left( 3 \right) \\
$
Similarly, subtract equation (1) and (2), to get the value of $\cos \theta $
$
h - k = 2\cos \theta + 2\sin \theta + 1 - 2\sin \theta + 2\cos \theta - \sqrt 3 \\
\Rightarrow h - k = 4\cos \theta + 1 - \sqrt 3 \\
\Rightarrow \cos \theta = \dfrac{{h - k - 1 + \sqrt 3 }}{4}{\text{ }}\left( 4 \right) \\
$
Squaring and adding equation (3) and (4).
$
{\sin ^2}\theta + {\cos ^2}\theta = {\left( {\dfrac{{h + k - 1 - \sqrt 3 }}{4}} \right)^2} + {\left( {\dfrac{{h - k - 1 + \sqrt 3 }}{4}} \right)^2} \\
\Rightarrow 16 = {\left( {h + k - 1 - \sqrt 3 } \right)^2} + {\left( {h - k - 1 + \sqrt 3 } \right)^2} \\
\Rightarrow 16 = {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} + 2\left( {h - 1} \right)\left( {k - \sqrt 3 } \right) + {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} - 2\left( {h - 1} \right)\left( {k - \sqrt 3 } \right) \\
\Rightarrow 16 = 2\left( {{{\left( {h - 1} \right)}^2} + {{\left( {k - \sqrt 3 } \right)}^2}} \right) \\
\Rightarrow {\left( {h - 1} \right)^2} + {\left( {k - \sqrt 3 } \right)^2} = 8 \\
$
Replace $h$ by $x$ and $k$ by $y$ to write the equation of locus of orthocentre.
\[{\left( {x - 1} \right)^2} + {\left( {y - \sqrt 3 } \right)^2} = 8\]
Hence, option C is correct.
Note: The orthocentre is the intersecting point of all altitudes of the triangle. The centroid in a triangle is the intersecting point of all the medians. The circumcentre is the intersection of all the perpendicular bisectors of a triangle. The relation between orthocentre, circumcentre and centroid is given by, $0G:GH = 1:2$, where $H$ is circumcentre, where $O$ is orthocentre and where $G$ is centroid.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

