
The vertices of a triangle are $(2,3,5),( - 1,3,2),(3,5, - 2)$ then the angles are
A. ${30^ \circ },{30^ \circ },{30^ \circ }$
B. ${\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt 5 }}} \right),{90^ \circ },{\cos ^{ - 1}}\left( {\dfrac{{\sqrt 5 }}{{\sqrt 3 }}} \right)$
C. ${30^ \circ },{60^ \circ },{90^ \circ }$
D. ${\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right),{90^ \circ },{\cos ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)$
Answer
596.4k+ views
Hint: Convert whole scenario into vector form, find the position vector then use the information, we can find the angles using the formula \[\cos \theta = \dfrac{{\left| {\overrightarrow {{P_1}} .\overrightarrow {{P_2}} } \right|}}{{\left| {\overrightarrow {{P_1}} } \right|.\left| {\overrightarrow {{P_2}} } \right|}}\]. Here, P stands for position vector, ‘.’ Stands for dot product and ‘||’ is the argument as can be understood by $\left| {a\hat i + b\hat j + c\hat k} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $.
Complete step-by-step answer:
We have given three vertices. Let name these vertices as $A(2,3,5)$ , $B( - 1,3,2)$ , $C(3,5, - 2)$. Observe that, there are three dimensional points so co-ordinate geometry would not work here. Therefore, we’ll convert the whole scenario into vector form. A will be \[2\hat i + 3\hat j + 5\hat k\] , B will be $ - \hat i + 3\hat j + 2\hat k$ and C will be $3\hat i + 5\hat j - 2\hat k$. In order to get the angle, we need to find direction vectors as follows,
\[
\overrightarrow {AB} = - \hat i + 3\hat j + 2\hat k - 2\hat i - 3\hat j - 5\hat k = - 3\hat i - 3\hat k \\
\overrightarrow {BC} = 3\hat i + 5\hat j - 2\hat k + \hat i - 3\hat j - 2\hat k = 4\hat i + 2\hat j - 4\hat k \\
\overrightarrow {CA} = 2\hat i + 3\hat j + 5\hat k - 3\hat i - 5\hat j + 2\hat k = - \hat i - 2\hat j + 7\hat k \\
\]
Since, we have got our position vectors, now we can find the angles using the formula \[\cos \theta = \dfrac{{\left| {\overrightarrow {{P_1}} .\overrightarrow {{P_2}} } \right|}}{{\left| {\overrightarrow {{P_1}} } \right|.\left| {\overrightarrow {{P_2}} } \right|}}\]. Here, P stands for position vector, ‘.’ Stands for dot product and ‘||’ is the argument as can be understood by $\left| {a\hat i + b\hat j + c\hat k} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $. Now let’s calculate the angles using this information as follows,
\[
\cos A = \dfrac{{\left| {\overrightarrow {AB} .\overrightarrow {CA} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CA} } \right|}} \\
= \dfrac{{\left| {\left( { - 3\hat i - 3\hat k} \right).\left( { - \hat i - 2\hat j + 7\hat k} \right)} \right|}}{{\left| { - 3\hat i - 3\hat k} \right|.\left| { - \hat i - 2\hat j + 7\hat k} \right|}} \\
= \dfrac{{\left| {3 + 0 - 21} \right|}}{{\sqrt {{{( - 3)}^2} + {{( - 3)}^2}} .\sqrt {{{( - 1)}^2} + {{( - 2)}^2} + {{(7)}^2}} }} \\
= \dfrac{{18}}{{\sqrt {18} .\sqrt {54} }} \\
= \dfrac{{\sqrt {18} }}{{\sqrt {54} }} \\
= \dfrac{1}{{\sqrt 3 }} \\
\therefore \cos A = \dfrac{1}{{\sqrt 3 }} \\
A = {\cos ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\]
Similarly,
\[
\cos B = \dfrac{{\left| {\overrightarrow {AB} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BC} } \right|}} \\
= \dfrac{{\left| {\left( { - 3\hat i - 3\hat k} \right).\left( {4\hat i + 2\hat j - 4\hat k} \right)} \right|}}{{\left| { - 3\hat i - 3\hat k} \right|.\left| {4\hat i + 2\hat j - 4\hat k} \right|}} \\
= \dfrac{{\left| { - 12 + 12} \right|}}{{\sqrt {{{( - 3)}^2} + {{( - 3)}^2}} .\sqrt {{{(4)}^2} + {{(2)}^2} + {{( - 4)}^2}} }} \\
= 0 \\
\therefore \cos B = 0 \\
B = {90^ \circ } \\
\]
And finally,
\[
\cos C = \dfrac{{\left| {\overrightarrow {CA} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {BC} } \right|}} \\
= \dfrac{{\left| {\left( { - \hat i - 2\hat j + 7\hat k} \right).\left( {4\hat i + 2\hat j - 4\hat k} \right)} \right|}}{{\left| { - \hat i - 2\hat j + 7\hat k} \right|.\left| {4\hat i + 2\hat j - 4\hat k} \right|}} \\
= \dfrac{{\left| { - 4 - 4 - 28} \right|}}{{\sqrt {{{( - 1)}^2} + {{( - 2)}^2} + {{(7)}^2}} .\sqrt {{{(4)}^2} + {{(2)}^2} + {{( - 4)}^2}} }} \\
= \dfrac{{36}}{{\sqrt {54} .\sqrt {36} }} \\
= \dfrac{{\sqrt {36} }}{{\sqrt {54} }} \\
= \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\therefore \cos C = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
C = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right) \\
\]
Hence the required angles are ${\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right),{90^ \circ },{\cos ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)$ and the correct option is D.
Note: There is one more method to solve this question in which we’ll find these lines as in our solution we have calculated position vectors. Then we use the angle formula for three-dimensional geometry and get the result.
Complete step-by-step answer:
We have given three vertices. Let name these vertices as $A(2,3,5)$ , $B( - 1,3,2)$ , $C(3,5, - 2)$. Observe that, there are three dimensional points so co-ordinate geometry would not work here. Therefore, we’ll convert the whole scenario into vector form. A will be \[2\hat i + 3\hat j + 5\hat k\] , B will be $ - \hat i + 3\hat j + 2\hat k$ and C will be $3\hat i + 5\hat j - 2\hat k$. In order to get the angle, we need to find direction vectors as follows,
\[
\overrightarrow {AB} = - \hat i + 3\hat j + 2\hat k - 2\hat i - 3\hat j - 5\hat k = - 3\hat i - 3\hat k \\
\overrightarrow {BC} = 3\hat i + 5\hat j - 2\hat k + \hat i - 3\hat j - 2\hat k = 4\hat i + 2\hat j - 4\hat k \\
\overrightarrow {CA} = 2\hat i + 3\hat j + 5\hat k - 3\hat i - 5\hat j + 2\hat k = - \hat i - 2\hat j + 7\hat k \\
\]
Since, we have got our position vectors, now we can find the angles using the formula \[\cos \theta = \dfrac{{\left| {\overrightarrow {{P_1}} .\overrightarrow {{P_2}} } \right|}}{{\left| {\overrightarrow {{P_1}} } \right|.\left| {\overrightarrow {{P_2}} } \right|}}\]. Here, P stands for position vector, ‘.’ Stands for dot product and ‘||’ is the argument as can be understood by $\left| {a\hat i + b\hat j + c\hat k} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $. Now let’s calculate the angles using this information as follows,
\[
\cos A = \dfrac{{\left| {\overrightarrow {AB} .\overrightarrow {CA} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CA} } \right|}} \\
= \dfrac{{\left| {\left( { - 3\hat i - 3\hat k} \right).\left( { - \hat i - 2\hat j + 7\hat k} \right)} \right|}}{{\left| { - 3\hat i - 3\hat k} \right|.\left| { - \hat i - 2\hat j + 7\hat k} \right|}} \\
= \dfrac{{\left| {3 + 0 - 21} \right|}}{{\sqrt {{{( - 3)}^2} + {{( - 3)}^2}} .\sqrt {{{( - 1)}^2} + {{( - 2)}^2} + {{(7)}^2}} }} \\
= \dfrac{{18}}{{\sqrt {18} .\sqrt {54} }} \\
= \dfrac{{\sqrt {18} }}{{\sqrt {54} }} \\
= \dfrac{1}{{\sqrt 3 }} \\
\therefore \cos A = \dfrac{1}{{\sqrt 3 }} \\
A = {\cos ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\
\]
Similarly,
\[
\cos B = \dfrac{{\left| {\overrightarrow {AB} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BC} } \right|}} \\
= \dfrac{{\left| {\left( { - 3\hat i - 3\hat k} \right).\left( {4\hat i + 2\hat j - 4\hat k} \right)} \right|}}{{\left| { - 3\hat i - 3\hat k} \right|.\left| {4\hat i + 2\hat j - 4\hat k} \right|}} \\
= \dfrac{{\left| { - 12 + 12} \right|}}{{\sqrt {{{( - 3)}^2} + {{( - 3)}^2}} .\sqrt {{{(4)}^2} + {{(2)}^2} + {{( - 4)}^2}} }} \\
= 0 \\
\therefore \cos B = 0 \\
B = {90^ \circ } \\
\]
And finally,
\[
\cos C = \dfrac{{\left| {\overrightarrow {CA} .\overrightarrow {BC} } \right|}}{{\left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {BC} } \right|}} \\
= \dfrac{{\left| {\left( { - \hat i - 2\hat j + 7\hat k} \right).\left( {4\hat i + 2\hat j - 4\hat k} \right)} \right|}}{{\left| { - \hat i - 2\hat j + 7\hat k} \right|.\left| {4\hat i + 2\hat j - 4\hat k} \right|}} \\
= \dfrac{{\left| { - 4 - 4 - 28} \right|}}{{\sqrt {{{( - 1)}^2} + {{( - 2)}^2} + {{(7)}^2}} .\sqrt {{{(4)}^2} + {{(2)}^2} + {{( - 4)}^2}} }} \\
= \dfrac{{36}}{{\sqrt {54} .\sqrt {36} }} \\
= \dfrac{{\sqrt {36} }}{{\sqrt {54} }} \\
= \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\therefore \cos C = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
C = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right) \\
\]
Hence the required angles are ${\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right),{90^ \circ },{\cos ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)$ and the correct option is D.
Note: There is one more method to solve this question in which we’ll find these lines as in our solution we have calculated position vectors. Then we use the angle formula for three-dimensional geometry and get the result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

