
The velocity of sound in air at room temperature is \[350\,{\text{m/s}}\]. An air column \[35\,{\text{cm}}\] is in length. Find the frequency of the third overtone in a pipe, when it is (a) closed at one end (b) open at both ends.
Answer
550.8k+ views
Hint: Use the formula for velocity of a wave in terms of frequency of the wave. Recall the values of wavelengths of the waves for the third overtone when an organ pipe is closed at one end and open at both the ends. Substitute these values in the formula and determine the required values of frequencies.
Formula used:
The velocity \[v\] of a wave is given by
\[v = n\lambda \] …… (1)
Here, \[n\] is frequency of the wave and \[\lambda \] is wavelength of the wave.
Complete step by step answer:
(a) We have given that the velocity of the sound wave in the organ pipe is \[350\,{\text{m/s}}\].
\[v = 350\,{\text{m/s}}\]
The length of the organ pipe is \[35\,{\text{cm}}\].
\[L = 35\,{\text{cm}}\]
The wavelength \[{\lambda _3}\] of the wave in an organ pipe closed at one end for third overtone is
\[{\lambda _3} = \dfrac{{4L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe closed at one end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in an organ pipe closed at one end.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{4L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{4L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{4L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {0.35\,{\text{m}}} \right)}}\]
\[ \Rightarrow {n_3} = 750\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe closed at one end is \[750\,{\text{Hz}}\].
(b) The wavelength \[{\lambda _3}\] of the wave in an organ pipe open at both ends for third overtone is \[{\lambda _3} = \dfrac{{2L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe open at both ends end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in the organ pipe open at both ends.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{2L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{2L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{2L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {0.35\,{\text{m}}} \right)}}\]
\[ \therefore {n_3} = 1500\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe open at both ends is \[1500\,{\text{Hz}}\].
Note: The students should be careful while using the values of the wavelengths of the waves for the third overtone in the organ pipe closed at one end and open at both ends. If these values are taken incorrect then the final value of the frequency will also be incorrect.
Formula used:
The velocity \[v\] of a wave is given by
\[v = n\lambda \] …… (1)
Here, \[n\] is frequency of the wave and \[\lambda \] is wavelength of the wave.
Complete step by step answer:
(a) We have given that the velocity of the sound wave in the organ pipe is \[350\,{\text{m/s}}\].
\[v = 350\,{\text{m/s}}\]
The length of the organ pipe is \[35\,{\text{cm}}\].
\[L = 35\,{\text{cm}}\]
The wavelength \[{\lambda _3}\] of the wave in an organ pipe closed at one end for third overtone is
\[{\lambda _3} = \dfrac{{4L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe closed at one end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in an organ pipe closed at one end.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{4L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{4L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{4L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {0.35\,{\text{m}}} \right)}}\]
\[ \Rightarrow {n_3} = 750\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe closed at one end is \[750\,{\text{Hz}}\].
(b) The wavelength \[{\lambda _3}\] of the wave in an organ pipe open at both ends for third overtone is \[{\lambda _3} = \dfrac{{2L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe open at both ends end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in the organ pipe open at both ends.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{2L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{2L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{2L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {0.35\,{\text{m}}} \right)}}\]
\[ \therefore {n_3} = 1500\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe open at both ends is \[1500\,{\text{Hz}}\].
Note: The students should be careful while using the values of the wavelengths of the waves for the third overtone in the organ pipe closed at one end and open at both ends. If these values are taken incorrect then the final value of the frequency will also be incorrect.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

The percentage of free SO3 in oleum sample which is class 11 chemistry CBSE

