
The vector(s) which are coplanar with vectors \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \], are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] are:
A \[\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \]
B \[ - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge \]
C \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \]
D \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Answer
528.9k+ views
Hint: Coplanar vectors are the vectors which lie on the same plane, in a three-dimensional space. These are vectors which are parallel to the same plane. We can always find in a plane any two random vectors, which are coplanar, hence we can find by solving for the vectors which are coplanar with respect to the perpendicular vector.
Complete step-by-step solution:
Let us write the given vectors i.e.,
\[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
And the given vectors are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \].
Now let \[\mathop a\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \], \[\mathop b\limits^ \wedge \]= \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] and \[\mathop c\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Let the vector on the plane of \[\mathop a\limits^ \wedge \] and \[\mathop b\limits^ \wedge \] is:
\[\mathop r\limits^ \wedge = \lambda \mathop a\limits^ \wedge + \mu \mathop b\limits^ \wedge \]
Now, substitute the vectors of a and b as
\[\mathop r\limits^ \wedge = \lambda \left( {\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge } \right) + \mu \left( {\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)\]
\[\mathop r\limits^ \wedge = \left( {\lambda + \mu } \right)i + \left( {\lambda + 2\mu } \right)j + \left( {2\lambda + \mu } \right)k\]
Also,
\[\mathop r\limits^ \wedge \cdot \mathop c\limits^ \wedge = 0\]
\[ \Rightarrow \]\[\left( {\lambda + \mu } \right) \cdot 1 + \left( {\lambda + 2\mu } \right) \cdot 1 + \left( {2\lambda + \mu } \right) \cdot 1 = 0\]
\[ \Rightarrow \]\[4\lambda + 4\mu = 0\]
\[ \Rightarrow \]\[\lambda + \mu = 0\]
Hence,
\[\left[ {\mathop r\limits^ \wedge \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right] = 0\]
Therefore, vectors \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] satisfies the given condition.
Hence, the answer is both option C and D.
Note: In this above question, we drew a figure of a triangle. Drawing a figure really helped to solve the question. While solving any trigonometric ratio related question, it is highly recommended to draw a diagram which will not only help in clearing the confusion but will also help in easily solving the question.
Complete step-by-step solution:
Let us write the given vectors i.e.,
\[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
And the given vectors are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \].
Now let \[\mathop a\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \], \[\mathop b\limits^ \wedge \]= \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] and \[\mathop c\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Let the vector on the plane of \[\mathop a\limits^ \wedge \] and \[\mathop b\limits^ \wedge \] is:
\[\mathop r\limits^ \wedge = \lambda \mathop a\limits^ \wedge + \mu \mathop b\limits^ \wedge \]
Now, substitute the vectors of a and b as
\[\mathop r\limits^ \wedge = \lambda \left( {\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge } \right) + \mu \left( {\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)\]
\[\mathop r\limits^ \wedge = \left( {\lambda + \mu } \right)i + \left( {\lambda + 2\mu } \right)j + \left( {2\lambda + \mu } \right)k\]
Also,
\[\mathop r\limits^ \wedge \cdot \mathop c\limits^ \wedge = 0\]
\[ \Rightarrow \]\[\left( {\lambda + \mu } \right) \cdot 1 + \left( {\lambda + 2\mu } \right) \cdot 1 + \left( {2\lambda + \mu } \right) \cdot 1 = 0\]
\[ \Rightarrow \]\[4\lambda + 4\mu = 0\]
\[ \Rightarrow \]\[\lambda + \mu = 0\]
Hence,
\[\left[ {\mathop r\limits^ \wedge \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right] = 0\]
Therefore, vectors \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] satisfies the given condition.
Hence, the answer is both option C and D.
Note: In this above question, we drew a figure of a triangle. Drawing a figure really helped to solve the question. While solving any trigonometric ratio related question, it is highly recommended to draw a diagram which will not only help in clearing the confusion but will also help in easily solving the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

