
The vector(s) which are coplanar with vectors \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \], are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] are:
A \[\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \]
B \[ - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge \]
C \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \]
D \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Answer
448.2k+ views
Hint: Coplanar vectors are the vectors which lie on the same plane, in a three-dimensional space. These are vectors which are parallel to the same plane. We can always find in a plane any two random vectors, which are coplanar, hence we can find by solving for the vectors which are coplanar with respect to the perpendicular vector.
Complete step-by-step solution:
Let us write the given vectors i.e.,
\[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
And the given vectors are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \].
Now let \[\mathop a\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \], \[\mathop b\limits^ \wedge \]= \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] and \[\mathop c\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Let the vector on the plane of \[\mathop a\limits^ \wedge \] and \[\mathop b\limits^ \wedge \] is:
\[\mathop r\limits^ \wedge = \lambda \mathop a\limits^ \wedge + \mu \mathop b\limits^ \wedge \]
Now, substitute the vectors of a and b as
\[\mathop r\limits^ \wedge = \lambda \left( {\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge } \right) + \mu \left( {\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)\]
\[\mathop r\limits^ \wedge = \left( {\lambda + \mu } \right)i + \left( {\lambda + 2\mu } \right)j + \left( {2\lambda + \mu } \right)k\]
Also,
\[\mathop r\limits^ \wedge \cdot \mathop c\limits^ \wedge = 0\]
\[ \Rightarrow \]\[\left( {\lambda + \mu } \right) \cdot 1 + \left( {\lambda + 2\mu } \right) \cdot 1 + \left( {2\lambda + \mu } \right) \cdot 1 = 0\]
\[ \Rightarrow \]\[4\lambda + 4\mu = 0\]
\[ \Rightarrow \]\[\lambda + \mu = 0\]
Hence,
\[\left[ {\mathop r\limits^ \wedge \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right] = 0\]
Therefore, vectors \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] satisfies the given condition.
Hence, the answer is both option C and D.
Note: In this above question, we drew a figure of a triangle. Drawing a figure really helped to solve the question. While solving any trigonometric ratio related question, it is highly recommended to draw a diagram which will not only help in clearing the confusion but will also help in easily solving the question.
Complete step-by-step solution:
Let us write the given vectors i.e.,
\[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \] and \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
And the given vectors are perpendicular to the vector \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \].
Now let \[\mathop a\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge \], \[\mathop b\limits^ \wedge \]= \[\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] and \[\mathop c\limits^ \wedge \]= \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \]
Let the vector on the plane of \[\mathop a\limits^ \wedge \] and \[\mathop b\limits^ \wedge \] is:
\[\mathop r\limits^ \wedge = \lambda \mathop a\limits^ \wedge + \mu \mathop b\limits^ \wedge \]
Now, substitute the vectors of a and b as
\[\mathop r\limits^ \wedge = \lambda \left( {\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge } \right) + \mu \left( {\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)\]
\[\mathop r\limits^ \wedge = \left( {\lambda + \mu } \right)i + \left( {\lambda + 2\mu } \right)j + \left( {2\lambda + \mu } \right)k\]
Also,
\[\mathop r\limits^ \wedge \cdot \mathop c\limits^ \wedge = 0\]
\[ \Rightarrow \]\[\left( {\lambda + \mu } \right) \cdot 1 + \left( {\lambda + 2\mu } \right) \cdot 1 + \left( {2\lambda + \mu } \right) \cdot 1 = 0\]
\[ \Rightarrow \]\[4\lambda + 4\mu = 0\]
\[ \Rightarrow \]\[\lambda + \mu = 0\]
Hence,
\[\left[ {\mathop r\limits^ \wedge \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right] = 0\]
Therefore, vectors \[\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[ - \mathop j\limits^ \wedge + \mathop k\limits^ \wedge \] satisfies the given condition.
Hence, the answer is both option C and D.
Note: In this above question, we drew a figure of a triangle. Drawing a figure really helped to solve the question. While solving any trigonometric ratio related question, it is highly recommended to draw a diagram which will not only help in clearing the confusion but will also help in easily solving the question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
