
The vectors \[\overrightarrow{a}\] and \[\overrightarrow{b}\] are not perpendicular and \[\overrightarrow{c}\] , \[\overrightarrow{d}\] are two vectors satisfying \[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] and \[\overrightarrow{a}.\overrightarrow{d}=0\] . The vector \[\overrightarrow{d}\] is equal to
A.\[\overrightarrow{b}-\dfrac{\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\]
B.\[\overrightarrow{c}+\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\]
C.\[\overrightarrow{b}+\dfrac{\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\]
D.\[\overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\]
Answer
592.8k+ views
Hint: We have four vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] , \[\overrightarrow{c}\] , and \[\overrightarrow{d}\] . We have two conditions \[b\times c=b\times d\] and \[a.d=0\] . Cross multiply by \[\overrightarrow{a}\] in the LHS and RHS of \[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] . We know the formula,
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] . Now, using this formula, solve the equation, \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] . Then, use the condition \[\overrightarrow{a}.\overrightarrow{d}=0\] , as given in the question. Now, divide by \[-(\overrightarrow{a}.\overrightarrow{b})\] in LHS and RHS after expanding \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] using the formula \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] . Solve them further.
Complete step-by-step answer:
According to the question, it is given that we have four vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] , \[\overrightarrow{c}\] , and \[\overrightarrow{d}\] . The vectors \[\overrightarrow{a}\] and \[\overrightarrow{b}\] are not perpendicular. We also have two conditions given in the question.
\[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] ……………………(1)
\[\overrightarrow{a}.\overrightarrow{d}=0\] ………………………….(2)
Now, multiplying by \[\overrightarrow{a}\] in equation (1), we get
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] ………………………………..(3)
We need to simplify equation (3) and we also know the formula, \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] .
Using this formula, simplifying equation (3)
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\]
\[\Rightarrow \overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b})\] ………………………..(4)
Now, dividing by \[-(\overrightarrow{a}.\overrightarrow{b})\] in equation (4), we get
\[\Rightarrow \dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}\]
\[\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d}\] …………………………(5)
From equation (2), we have \[\overrightarrow{a}.\overrightarrow{d}=0\] .
Now, putting \[\overrightarrow{a}.\overrightarrow{d}=0\] in equation (5), we get
\[\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(0)}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d}\]
\[\begin{align}
& \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=0+\overrightarrow{d} \\
& \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=\overrightarrow{d} \\
\end{align}\]
So, \[\overrightarrow{d}=\overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\] .
Hence, the option (D) is the correct option.
Note: In this question, one may think to do cross-multiplication by \[\overrightarrow{b}\] in the LHS and RHS of the equation \[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] . If we do so, then we will not be able to use the condition \[\overrightarrow{a}.\overrightarrow{d}=0\] .
\[\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{d})\]
\[\Rightarrow \overrightarrow{b}(\overrightarrow{b}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{b}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{b}.\overrightarrow{b})\]
Also, in the question conditions for \[\overrightarrow{b}.\overrightarrow{d}\] and \[\overrightarrow{b}.\overrightarrow{c}\]is not given. So, we can’t approach this question by this method.
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] . Now, using this formula, solve the equation, \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] . Then, use the condition \[\overrightarrow{a}.\overrightarrow{d}=0\] , as given in the question. Now, divide by \[-(\overrightarrow{a}.\overrightarrow{b})\] in LHS and RHS after expanding \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] using the formula \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] . Solve them further.
Complete step-by-step answer:
According to the question, it is given that we have four vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] , \[\overrightarrow{c}\] , and \[\overrightarrow{d}\] . The vectors \[\overrightarrow{a}\] and \[\overrightarrow{b}\] are not perpendicular. We also have two conditions given in the question.
\[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] ……………………(1)
\[\overrightarrow{a}.\overrightarrow{d}=0\] ………………………….(2)
Now, multiplying by \[\overrightarrow{a}\] in equation (1), we get
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\] ………………………………..(3)
We need to simplify equation (3) and we also know the formula, \[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})\] .
Using this formula, simplifying equation (3)
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})\]
\[\Rightarrow \overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b})\] ………………………..(4)
Now, dividing by \[-(\overrightarrow{a}.\overrightarrow{b})\] in equation (4), we get
\[\Rightarrow \dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}\]
\[\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d}\] …………………………(5)
From equation (2), we have \[\overrightarrow{a}.\overrightarrow{d}=0\] .
Now, putting \[\overrightarrow{a}.\overrightarrow{d}=0\] in equation (5), we get
\[\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(0)}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d}\]
\[\begin{align}
& \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=0+\overrightarrow{d} \\
& \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=\overrightarrow{d} \\
\end{align}\]
So, \[\overrightarrow{d}=\overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}\] .
Hence, the option (D) is the correct option.
Note: In this question, one may think to do cross-multiplication by \[\overrightarrow{b}\] in the LHS and RHS of the equation \[\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}\] . If we do so, then we will not be able to use the condition \[\overrightarrow{a}.\overrightarrow{d}=0\] .
\[\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{d})\]
\[\Rightarrow \overrightarrow{b}(\overrightarrow{b}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{b}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{b}.\overrightarrow{b})\]
Also, in the question conditions for \[\overrightarrow{b}.\overrightarrow{d}\] and \[\overrightarrow{b}.\overrightarrow{c}\]is not given. So, we can’t approach this question by this method.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

