
The vector $\widehat{i}+x\widehat{j}+3\widehat{k}$ is rotated through an angle $\theta $ and is doubled in magnitude. It now becomes $4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$ . The values of x are
(a) 1
(b) $-\dfrac{2}{3}$
(c) 2
(d) $\dfrac{4}{3}$
Answer
513.6k+ views
Hint: We have to denote $\overrightarrow{{{v}_{1}}}=\widehat{i}+x\widehat{j}+3\widehat{k}$ and $\overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$ . Then, according to the given condition, we can write $\left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|$ . Then, we have to substitute the magnitudes of $\overrightarrow{{{v}_{1}}}$ and $\overrightarrow{{{v}_{2}}}$ in this equation and solve for x.
Complete step by step answer:
We are given that the vector $\widehat{i}+x\widehat{j}+3\widehat{k}$ is rotated through an angle $\theta $. Let us consider $\overrightarrow{{{v}_{1}}}=\widehat{i}+x\widehat{j}+3\widehat{k}$
After the rotation, we are given that the vector becomes $4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$ . So let $\overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$
We are also given that after the rotation, the magnitude is doubled. We can denote this mathematically as
$\left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|...\left( i \right)$
We know that for a vector $\overrightarrow{v}=a\widehat{i}+b\widehat{j}+c\widehat{k}$ , the magnitude is given by
$\left| \overrightarrow{v} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$
Therefore, we can write equation (i) as
$\begin{align}
& \Rightarrow \sqrt{{{4}^{2}}+{{\left( 4x-2 \right)}^{2}}+{{2}^{2}}}=2\sqrt{{{1}^{2}}+{{x}^{2}}+{{3}^{2}}} \\
& \Rightarrow \sqrt{16+{{\left( 4x-2 \right)}^{2}}+4}=2\sqrt{1+{{x}^{2}}+9} \\
\end{align}$
Let us square both the sides of the above equation.
$\Rightarrow 16+{{\left( 4x-2 \right)}^{2}}+4=4\left( 1+{{x}^{2}}+9 \right)$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
$\begin{align}
& \Rightarrow 16+16{{x}^{2}}-\left( 2\times 4x\times 2 \right)+4+4=4\left( 1+{{x}^{2}}+9 \right) \\
& \Rightarrow 16+16{{x}^{2}}-16x+4+4=4\left( {{x}^{2}}+10 \right) \\
& \Rightarrow 24+16x-16{{x}^{2}}=4\left( {{x}^{2}}+10 \right) \\
\end{align}$
Let us take common factor of 4 outside from the LHS.
\[\Rightarrow 4\left( 6-4x+4{{x}^{2}} \right)=4\left( {{x}^{2}}+10 \right)\]
We can now cancel 4 from both the sides.
\[\Rightarrow 6-4x+4{{x}^{2}}={{x}^{2}}+10\]
Let us take the terms in x and ${{x}^{2}}$ to the LHS and constant on the RHS.
\[\begin{align}
& \Rightarrow -4x+4{{x}^{2}}-{{x}^{2}}=10-6 \\
& \Rightarrow 3{{x}^{2}}-4x=4 \\
\end{align}\]
We have to take 4 to the LHS from the RHS.
\[\Rightarrow 3{{x}^{2}}-4x-4=0...\left( ii \right)\]
We can see that the above equation is of the form $a{{x}^{2}}+bx+c=0$ . We can write the solution of this standard form as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
From equation (ii), we can see that $a=3,b=-4,c=-4$ .
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 3\times -4}}{2\times 3} \\
& \Rightarrow x=\dfrac{4\pm \sqrt{16+48}}{6} \\
& \Rightarrow x=\dfrac{4\pm \sqrt{64}}{6} \\
& \Rightarrow x=\dfrac{4\pm 8}{6} \\
\end{align}\]
Therefore, we can write the value of x as
$\begin{align}
& \Rightarrow x=\dfrac{4+8}{6},\dfrac{4-8}{6} \\
& \Rightarrow x=\dfrac{12}{6},-\dfrac{4}{6} \\
& \Rightarrow x=2,-\dfrac{2}{3} \\
\end{align}$
So, the correct answer is “Option b and c”.
Note: Students have a chance of making mistake by writing the given condition as \[\left| \overrightarrow{{{v}_{1}}} \right|=2~\left| \overrightarrow{{{v}_{2}}} \right|\] . They must know to take the magnitudes of a vector. Students can verify the solution by doing the following procedure.
Let us consider the case when $x=2$ .Then we can write the two vectors as
$\overrightarrow{{{v}_{1}}}=\widehat{i}+2\widehat{j}+3\widehat{k}$
$\begin{align}
& \overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4\times 2-2 \right)\widehat{j}+2\widehat{k} \\
& \Rightarrow \overrightarrow{{{v}_{2}}}=4\widehat{i}+6\widehat{j}+2\widehat{k} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{1}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+{{2}^{2}}+{{3}^{2}}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+4+9} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{14}...\left( iii \right) \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{2}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{16+36+4} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{56} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\sqrt{14} \\
\end{align}$
From (iii), we can write
$\Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|$
Therefore, the given condition is satisfied.
Now, let us consider $x=-\dfrac{2}{3}$ .
$\overrightarrow{{{v}_{1}}}=\widehat{i}-\dfrac{2}{3}\widehat{j}+3\widehat{k}$
$\begin{align}
& \overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4\times -\dfrac{2}{3}-2 \right)\widehat{j}+2\widehat{k} \\
& \Rightarrow \overrightarrow{{{v}_{2}}}=4\widehat{i}-\dfrac{14}{3}\widehat{j}+2\widehat{k} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{1}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+{{\left( -\dfrac{2}{3} \right)}^{2}}+{{3}^{2}}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+\dfrac{4}{9}+9} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{\dfrac{94}{9}} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{2}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{16+\dfrac{196}{9}+4} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{\dfrac{376}{9}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\sqrt{\dfrac{94}{9}} \\
\end{align}$
From (iii), we can write
$\Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|$
Therefore, the given condition is satisfied.
Complete step by step answer:
We are given that the vector $\widehat{i}+x\widehat{j}+3\widehat{k}$ is rotated through an angle $\theta $. Let us consider $\overrightarrow{{{v}_{1}}}=\widehat{i}+x\widehat{j}+3\widehat{k}$
After the rotation, we are given that the vector becomes $4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$ . So let $\overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4x-2 \right)\widehat{j}+2\widehat{k}$
We are also given that after the rotation, the magnitude is doubled. We can denote this mathematically as
$\left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|...\left( i \right)$
We know that for a vector $\overrightarrow{v}=a\widehat{i}+b\widehat{j}+c\widehat{k}$ , the magnitude is given by
$\left| \overrightarrow{v} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$
Therefore, we can write equation (i) as
$\begin{align}
& \Rightarrow \sqrt{{{4}^{2}}+{{\left( 4x-2 \right)}^{2}}+{{2}^{2}}}=2\sqrt{{{1}^{2}}+{{x}^{2}}+{{3}^{2}}} \\
& \Rightarrow \sqrt{16+{{\left( 4x-2 \right)}^{2}}+4}=2\sqrt{1+{{x}^{2}}+9} \\
\end{align}$
Let us square both the sides of the above equation.
$\Rightarrow 16+{{\left( 4x-2 \right)}^{2}}+4=4\left( 1+{{x}^{2}}+9 \right)$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
$\begin{align}
& \Rightarrow 16+16{{x}^{2}}-\left( 2\times 4x\times 2 \right)+4+4=4\left( 1+{{x}^{2}}+9 \right) \\
& \Rightarrow 16+16{{x}^{2}}-16x+4+4=4\left( {{x}^{2}}+10 \right) \\
& \Rightarrow 24+16x-16{{x}^{2}}=4\left( {{x}^{2}}+10 \right) \\
\end{align}$
Let us take common factor of 4 outside from the LHS.
\[\Rightarrow 4\left( 6-4x+4{{x}^{2}} \right)=4\left( {{x}^{2}}+10 \right)\]
We can now cancel 4 from both the sides.
\[\Rightarrow 6-4x+4{{x}^{2}}={{x}^{2}}+10\]
Let us take the terms in x and ${{x}^{2}}$ to the LHS and constant on the RHS.
\[\begin{align}
& \Rightarrow -4x+4{{x}^{2}}-{{x}^{2}}=10-6 \\
& \Rightarrow 3{{x}^{2}}-4x=4 \\
\end{align}\]
We have to take 4 to the LHS from the RHS.
\[\Rightarrow 3{{x}^{2}}-4x-4=0...\left( ii \right)\]
We can see that the above equation is of the form $a{{x}^{2}}+bx+c=0$ . We can write the solution of this standard form as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
From equation (ii), we can see that $a=3,b=-4,c=-4$ .
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 3\times -4}}{2\times 3} \\
& \Rightarrow x=\dfrac{4\pm \sqrt{16+48}}{6} \\
& \Rightarrow x=\dfrac{4\pm \sqrt{64}}{6} \\
& \Rightarrow x=\dfrac{4\pm 8}{6} \\
\end{align}\]
Therefore, we can write the value of x as
$\begin{align}
& \Rightarrow x=\dfrac{4+8}{6},\dfrac{4-8}{6} \\
& \Rightarrow x=\dfrac{12}{6},-\dfrac{4}{6} \\
& \Rightarrow x=2,-\dfrac{2}{3} \\
\end{align}$
So, the correct answer is “Option b and c”.
Note: Students have a chance of making mistake by writing the given condition as \[\left| \overrightarrow{{{v}_{1}}} \right|=2~\left| \overrightarrow{{{v}_{2}}} \right|\] . They must know to take the magnitudes of a vector. Students can verify the solution by doing the following procedure.
Let us consider the case when $x=2$ .Then we can write the two vectors as
$\overrightarrow{{{v}_{1}}}=\widehat{i}+2\widehat{j}+3\widehat{k}$
$\begin{align}
& \overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4\times 2-2 \right)\widehat{j}+2\widehat{k} \\
& \Rightarrow \overrightarrow{{{v}_{2}}}=4\widehat{i}+6\widehat{j}+2\widehat{k} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{1}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+{{2}^{2}}+{{3}^{2}}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+4+9} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{14}...\left( iii \right) \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{2}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{16+36+4} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{56} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\sqrt{14} \\
\end{align}$
From (iii), we can write
$\Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|$
Therefore, the given condition is satisfied.
Now, let us consider $x=-\dfrac{2}{3}$ .
$\overrightarrow{{{v}_{1}}}=\widehat{i}-\dfrac{2}{3}\widehat{j}+3\widehat{k}$
$\begin{align}
& \overrightarrow{{{v}_{2}}}=4\widehat{i}+\left( 4\times -\dfrac{2}{3}-2 \right)\widehat{j}+2\widehat{k} \\
& \Rightarrow \overrightarrow{{{v}_{2}}}=4\widehat{i}-\dfrac{14}{3}\widehat{j}+2\widehat{k} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{1}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+{{\left( -\dfrac{2}{3} \right)}^{2}}+{{3}^{2}}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{1+\dfrac{4}{9}+9} \\
& \Rightarrow \left| \overrightarrow{{{v}_{1}}} \right|=\sqrt{\dfrac{94}{9}} \\
\end{align}$
Let us take the magnitude of $\overrightarrow{{{v}_{2}}}$ .
$\begin{align}
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{16+\dfrac{196}{9}+4} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=\sqrt{\dfrac{376}{9}} \\
& \Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\sqrt{\dfrac{94}{9}} \\
\end{align}$
From (iii), we can write
$\Rightarrow \left| \overrightarrow{{{v}_{2}}} \right|=2\left| \overrightarrow{{{v}_{1}}} \right|$
Therefore, the given condition is satisfied.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Sketch the electric field lines in case of an electric class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Explain the formation of energy bands in solids On class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

