
The vector $\overrightarrow {OA} $, where $O$ is the origin is given by $\overrightarrow {OA} = 2\widehat i + 2\widehat j$. Now it is rotated by $45^\circ $ anticlockwise about $O$. What will be the new vector?
1.$2\sqrt 2 \widehat j$
2.$2\widehat j$
3.$2\widehat i$
4.$2\sqrt 2 \widehat i$
Answer
545.4k+ views
Hint: We will first find the angle that $\overrightarrow {OA} $ makes with the $x - $ axis. Then we will rotate $\overrightarrow {OA} $ anticlockwise about the origin and find the new angle. Finally, we will find the $x$ and $y$ components of the new vector and represent it in the form of a vector.
Formula used:
If $O$ is the origin and $A$ is any point such that the vector $\overrightarrow {OA} = x\widehat i + y\widehat j$, then $\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} $.
If $\theta $ is the angle that $\overrightarrow {OA} $ makes with the $x - $ axis, then $\tan \theta = \dfrac{y}{x}$.
Complete step-by-step answer:
It is given that $\overrightarrow {OA} = 2\widehat i + 2\widehat j$, where $\widehat i{\text{ and }}\widehat j$ are unit vectors along $x{\text{ and }}y$ respectively.
Here, $x - $ component of $\overrightarrow {OA} $ is $2$ and $y - $ component of $\overrightarrow {OA} $ is $2$.
Let $\theta $ be the angle that $\overrightarrow {OA} $ makes with the $x - $ axis. Then,
$ \tan \theta = \dfrac{y}{x} \\
\Rightarrow \tan \theta = \dfrac{2}{2} = 1 \\ $
We know that $\tan 45^\circ = 1$, so substituting this in above equation, we get
$ \Rightarrow \tan \theta = \tan 45^\circ $
$ \Rightarrow \theta = 45^\circ $
Now, let us rotate $\overrightarrow {OA} $ anticlockwise about the origin by $45^\circ $. Let $\alpha $ be the angle that the new vector makes with the $x - $axis.
We observe that
$\alpha = \theta + 45^\circ $
Substituting $\theta = 45^\circ $ in the above equation, we get
$ \Rightarrow \alpha = 45^\circ + 45^\circ \\
\Rightarrow \alpha = 90^\circ \\ $
Let us now find the components of the new vector.
Substituting $x = y = 2$ in the formula $\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} $, we get
$\left| {\overrightarrow {OA} } \right| = \sqrt {{2^2} + {2^2}} $
Applying the exponent on the terms, we get
$ \Rightarrow \left| {\overrightarrow {OA} } \right| = \sqrt 8 = 2\sqrt 2 $
The $x - $component of \[\overrightarrow {OA} = \left| {\overrightarrow {OA} } \right|\cos \alpha \widehat i\]
Substituting $\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 $ in the above equation, we get
$\overrightarrow {OA} = 2\sqrt 2 \cos 90^\circ \widehat i$
Now substituting $\cos 90^\circ = 0$ in the above equation, we get
$ \Rightarrow \overrightarrow {OA} = 0\widehat i$
The $y - $component of $\overrightarrow {OA} $ \[ = \left| {\overrightarrow {OA} } \right|\sin \alpha {\text{ }}\widehat j\]
Substituting $\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 $ in the above equation, we get
\[\overrightarrow {OA} = 2\sqrt 2 \sin 90^\circ \widehat j\]
Now substituting $\sin 90^\circ = 1$ in the above equation, we get
\[ \Rightarrow \overrightarrow {OA} = 2\sqrt 2 \widehat j\]
Hence, the new vector $\overrightarrow {OA} = 0\widehat i + 2\sqrt 2 \widehat j = 2\sqrt 2 \widehat j$.
Thus, option (1) is the correct option .
Note: If a vector $\overrightarrow {OA} $ makes an angle $\theta $ with the $x - $axis, then the $x{\text{ and }}y$ components of $\overrightarrow {OA} $ are given as $\left| {\overrightarrow {OA} } \right|\cos \theta $ and $\left| {\overrightarrow {OA} } \right|\sin \theta $ with unit vectors $\widehat i{\text{ and }}\widehat j$ respectively. We have selected the position of $\overrightarrow {OA} $ in the first quadrant since both $x{\text{ and }}y$ components are positive. We can also approach the above problem as follows: After rotating the vector by $45^\circ $, the new vector lies on the $y - $axis. In this case, the $x - $component of the new vector will be zero, which is what we obtained.
Formula used:
If $O$ is the origin and $A$ is any point such that the vector $\overrightarrow {OA} = x\widehat i + y\widehat j$, then $\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} $.
If $\theta $ is the angle that $\overrightarrow {OA} $ makes with the $x - $ axis, then $\tan \theta = \dfrac{y}{x}$.
Complete step-by-step answer:
It is given that $\overrightarrow {OA} = 2\widehat i + 2\widehat j$, where $\widehat i{\text{ and }}\widehat j$ are unit vectors along $x{\text{ and }}y$ respectively.
Here, $x - $ component of $\overrightarrow {OA} $ is $2$ and $y - $ component of $\overrightarrow {OA} $ is $2$.
Let $\theta $ be the angle that $\overrightarrow {OA} $ makes with the $x - $ axis. Then,
$ \tan \theta = \dfrac{y}{x} \\
\Rightarrow \tan \theta = \dfrac{2}{2} = 1 \\ $
We know that $\tan 45^\circ = 1$, so substituting this in above equation, we get
$ \Rightarrow \tan \theta = \tan 45^\circ $
$ \Rightarrow \theta = 45^\circ $
Now, let us rotate $\overrightarrow {OA} $ anticlockwise about the origin by $45^\circ $. Let $\alpha $ be the angle that the new vector makes with the $x - $axis.
We observe that
$\alpha = \theta + 45^\circ $
Substituting $\theta = 45^\circ $ in the above equation, we get
$ \Rightarrow \alpha = 45^\circ + 45^\circ \\
\Rightarrow \alpha = 90^\circ \\ $
Let us now find the components of the new vector.
Substituting $x = y = 2$ in the formula $\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} $, we get
$\left| {\overrightarrow {OA} } \right| = \sqrt {{2^2} + {2^2}} $
Applying the exponent on the terms, we get
$ \Rightarrow \left| {\overrightarrow {OA} } \right| = \sqrt 8 = 2\sqrt 2 $
The $x - $component of \[\overrightarrow {OA} = \left| {\overrightarrow {OA} } \right|\cos \alpha \widehat i\]
Substituting $\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 $ in the above equation, we get
$\overrightarrow {OA} = 2\sqrt 2 \cos 90^\circ \widehat i$
Now substituting $\cos 90^\circ = 0$ in the above equation, we get
$ \Rightarrow \overrightarrow {OA} = 0\widehat i$
The $y - $component of $\overrightarrow {OA} $ \[ = \left| {\overrightarrow {OA} } \right|\sin \alpha {\text{ }}\widehat j\]
Substituting $\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 $ in the above equation, we get
\[\overrightarrow {OA} = 2\sqrt 2 \sin 90^\circ \widehat j\]
Now substituting $\sin 90^\circ = 1$ in the above equation, we get
\[ \Rightarrow \overrightarrow {OA} = 2\sqrt 2 \widehat j\]
Hence, the new vector $\overrightarrow {OA} = 0\widehat i + 2\sqrt 2 \widehat j = 2\sqrt 2 \widehat j$.
Thus, option (1) is the correct option .
Note: If a vector $\overrightarrow {OA} $ makes an angle $\theta $ with the $x - $axis, then the $x{\text{ and }}y$ components of $\overrightarrow {OA} $ are given as $\left| {\overrightarrow {OA} } \right|\cos \theta $ and $\left| {\overrightarrow {OA} } \right|\sin \theta $ with unit vectors $\widehat i{\text{ and }}\widehat j$ respectively. We have selected the position of $\overrightarrow {OA} $ in the first quadrant since both $x{\text{ and }}y$ components are positive. We can also approach the above problem as follows: After rotating the vector by $45^\circ $, the new vector lies on the $y - $axis. In this case, the $x - $component of the new vector will be zero, which is what we obtained.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

