
The vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and \[2x+3y+4z=5\] which is perpendicular to the plane $x-y+z=0$ is:
A. $\vec{r}\times \left( \hat{i}+\hat{k} \right)+2=0$
B. $\vec{r}.\left( \hat{i}-\hat{k} \right)-2=0$
C. $\vec{r}.\left( \hat{i}-\hat{k} \right)+2=0$
D. $\vec{r}\times \left( \hat{i}-\hat{k} \right)+2=0$
Answer
511.5k+ views
Hint: We will first find the equation of a plane passing through the intersection of planes using the conventional formula, it will have $\lambda $ as unknown. To find this value we will use the second part of the question and will use the condition ${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$ for the normal vectors of both the planes. Finally we will convert the scalar equation into its vector form.
Complete step by step answer:
We know that Equation of a plane passing through the intersection of planes ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$and ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ is $\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0\text{ }........\text{Equation 1}\text{.}$
Now we have to take our first plane equation: $x+y+z=1$ and compare it with our standard equation written above: ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$ , to find out the values of ${{A}_{1}},{{B}_{1}},{{C}_{1}}$ and ${{d}_{1}}$.
Now the plane equation can be written as follows,
$x+y+z=1\Rightarrow 1x+1y+1z=1$ , on comparing it with ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$ we will get the following values:
${{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1\text{ }.............\text{ Equation 2}\text{.}$
Similarly for the second equation of plane $2x+3y+4z=5$ and compare it with our standard equation written above: ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ , to find out the values of ${{A}_{2}},{{B}_{2}},{{C}_{2}}$ and ${{d}_{2}}$.
Now on comparing it with ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ we will get the following values:
${{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5.............\text{ Equation 3}\text{.}$
Now we have written the formula of equation of plane through the intersection of the plane in equation 1 as : $\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0$ . Now we will put the values from equation 2: ${{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1$ and equation 3: ${{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5$ in this equation:
$\begin{align}
& \Rightarrow (1x+1y+1z-1)+\lambda \left( 2x+3y+4z-5 \right)=0 \\
& \Rightarrow x+y+z-1+2\lambda x+3\lambda y+4\lambda z-5\lambda =0 \\
\end{align}$
Now, we will take the variables x, y, z out:
$\Rightarrow \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0\text{ }................\text{Equation 4}\text{.}$
Now as given in the question, the plane is also perpendicular to the plane $x-y+z=0$ . So, the normal vector $\vec{N}$ of the required plane will be perpendicular to the normal vector $\vec{n}$ of $x-y+z=0$.
We will now find $\vec{N}$ and $\vec{n}$ :
We have the required plane from Equation 4: $\left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0$ , Therefore, $\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k}$
Similarly, for the plane $x-y+z=0$ , \[\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}\].
Now we know that: Two lines with direction ratios ${{a}_{1}},{{b}_{1}},{{c}_{1}}$ and ${{a}_{2}},{{b}_{2}},{{c}_{2}}$ are perpendicular, if ${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\Rightarrow \text{ Theory 1}\text{.}$
We will find the direction ratios of $\vec{N}$ and $\vec{n}$:
For $\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k}$ : Direction Ratios will be $1+2\lambda ,1+3\lambda ,1+4\lambda $ $\begin{align}
& {{a}_{1}}=1+2\lambda \\
& {{b}_{1}}=1+3\lambda \\
& {{c}_{1}}=1+4\lambda \\
\end{align}$
Similarly for \[\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}\], Direction ratios will be $1,-1,1$ ; Therefore
$\begin{align}
& {{a}_{2}}=1 \\
& {{b}_{2}}=-1 \\
& {{c}_{2}}=1 \\
\end{align}$
Now since $\vec{N}$ and $\vec{n}$ are perpendicular: ${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$ , as we saw in Theory 1, now we will put the values of direction ratios in this equation:
\[\begin{align}
& \Rightarrow {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\
& \Rightarrow \left( \left( 1+2\lambda \right)\times 1 \right)+\left( \left( 1+3\lambda \right)\times \left( -1 \right) \right)+\left( \left( 1+4\lambda \right)\times 1 \right)=0 \\
& \Rightarrow 1+2\lambda -1-3\lambda +1+4\lambda =0 \\
& \Rightarrow 1+3\lambda =0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}\]
Putting Value of $\lambda $ in equation 4, we have:
$\begin{align}
& \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0 \\
& \Rightarrow \left( 1+2\times \left( \dfrac{-1}{3} \right) \right)x+\left( 1+3\times \left( \dfrac{-1}{3} \right) \right)y+\left( 1+4\times \left( \dfrac{-1}{3} \right) \right)z+\left( -1-5\times \left( \dfrac{-1}{3} \right) \right)=0 \\
& \Rightarrow \left( 1-\dfrac{2}{3} \right)x+\left( 1-1 \right)y+\left( 1-\dfrac{4}{3} \right)z+\left( -1+\dfrac{5}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x-\dfrac{1}{3}z+\dfrac{2}{3}=0 \\
& \Rightarrow \dfrac{1}{3}\left( x-z+2 \right)=0 \\
& \Rightarrow x-z+2=0 \\
\end{align}$
We have with us the equation of plane as : $x-z+2=0$ , now we will convert it into the vector form:
Let $\overrightarrow{r}$ be the direction vector and therefore the vector equation becomes: $\overrightarrow{r}\left( \hat{i}-\hat{k} \right)+2=0$
Hence the answer is Option C.
Note:
Student might get confused in putting the values of the ${{A}_{1}},{{B}_{1}},{{C}_{1}}$ and ${{d}_{1}}$ and similarly other values as well. Chances of silly mistakes are more here as the values are very small and are used frequently. After finding the value of $\lambda $ , take care of the negative sign in the calculation.
Complete step by step answer:
We know that Equation of a plane passing through the intersection of planes ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$and ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ is $\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0\text{ }........\text{Equation 1}\text{.}$
Now we have to take our first plane equation: $x+y+z=1$ and compare it with our standard equation written above: ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$ , to find out the values of ${{A}_{1}},{{B}_{1}},{{C}_{1}}$ and ${{d}_{1}}$.
Now the plane equation can be written as follows,
$x+y+z=1\Rightarrow 1x+1y+1z=1$ , on comparing it with ${{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}$ we will get the following values:
${{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1\text{ }.............\text{ Equation 2}\text{.}$
Similarly for the second equation of plane $2x+3y+4z=5$ and compare it with our standard equation written above: ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ , to find out the values of ${{A}_{2}},{{B}_{2}},{{C}_{2}}$ and ${{d}_{2}}$.
Now on comparing it with ${{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}}$ we will get the following values:
${{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5.............\text{ Equation 3}\text{.}$
Now we have written the formula of equation of plane through the intersection of the plane in equation 1 as : $\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0$ . Now we will put the values from equation 2: ${{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1$ and equation 3: ${{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5$ in this equation:
$\begin{align}
& \Rightarrow (1x+1y+1z-1)+\lambda \left( 2x+3y+4z-5 \right)=0 \\
& \Rightarrow x+y+z-1+2\lambda x+3\lambda y+4\lambda z-5\lambda =0 \\
\end{align}$
Now, we will take the variables x, y, z out:
$\Rightarrow \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0\text{ }................\text{Equation 4}\text{.}$
Now as given in the question, the plane is also perpendicular to the plane $x-y+z=0$ . So, the normal vector $\vec{N}$ of the required plane will be perpendicular to the normal vector $\vec{n}$ of $x-y+z=0$.
We will now find $\vec{N}$ and $\vec{n}$ :
We have the required plane from Equation 4: $\left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0$ , Therefore, $\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k}$
Similarly, for the plane $x-y+z=0$ , \[\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}\].
Now we know that: Two lines with direction ratios ${{a}_{1}},{{b}_{1}},{{c}_{1}}$ and ${{a}_{2}},{{b}_{2}},{{c}_{2}}$ are perpendicular, if ${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\Rightarrow \text{ Theory 1}\text{.}$
We will find the direction ratios of $\vec{N}$ and $\vec{n}$:
For $\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k}$ : Direction Ratios will be $1+2\lambda ,1+3\lambda ,1+4\lambda $ $\begin{align}
& {{a}_{1}}=1+2\lambda \\
& {{b}_{1}}=1+3\lambda \\
& {{c}_{1}}=1+4\lambda \\
\end{align}$
Similarly for \[\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}\], Direction ratios will be $1,-1,1$ ; Therefore
$\begin{align}
& {{a}_{2}}=1 \\
& {{b}_{2}}=-1 \\
& {{c}_{2}}=1 \\
\end{align}$
Now since $\vec{N}$ and $\vec{n}$ are perpendicular: ${{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0$ , as we saw in Theory 1, now we will put the values of direction ratios in this equation:
\[\begin{align}
& \Rightarrow {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\
& \Rightarrow \left( \left( 1+2\lambda \right)\times 1 \right)+\left( \left( 1+3\lambda \right)\times \left( -1 \right) \right)+\left( \left( 1+4\lambda \right)\times 1 \right)=0 \\
& \Rightarrow 1+2\lambda -1-3\lambda +1+4\lambda =0 \\
& \Rightarrow 1+3\lambda =0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}\]
Putting Value of $\lambda $ in equation 4, we have:
$\begin{align}
& \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0 \\
& \Rightarrow \left( 1+2\times \left( \dfrac{-1}{3} \right) \right)x+\left( 1+3\times \left( \dfrac{-1}{3} \right) \right)y+\left( 1+4\times \left( \dfrac{-1}{3} \right) \right)z+\left( -1-5\times \left( \dfrac{-1}{3} \right) \right)=0 \\
& \Rightarrow \left( 1-\dfrac{2}{3} \right)x+\left( 1-1 \right)y+\left( 1-\dfrac{4}{3} \right)z+\left( -1+\dfrac{5}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x-\dfrac{1}{3}z+\dfrac{2}{3}=0 \\
& \Rightarrow \dfrac{1}{3}\left( x-z+2 \right)=0 \\
& \Rightarrow x-z+2=0 \\
\end{align}$
We have with us the equation of plane as : $x-z+2=0$ , now we will convert it into the vector form:
Let $\overrightarrow{r}$ be the direction vector and therefore the vector equation becomes: $\overrightarrow{r}\left( \hat{i}-\hat{k} \right)+2=0$
Hence the answer is Option C.
Note:
Student might get confused in putting the values of the ${{A}_{1}},{{B}_{1}},{{C}_{1}}$ and ${{d}_{1}}$ and similarly other values as well. Chances of silly mistakes are more here as the values are very small and are used frequently. After finding the value of $\lambda $ , take care of the negative sign in the calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
