
The value of $x$ at which $g(x)$ becomes zero, is
A. $3$
B. $4$
C. $5$
D. $6$
Answer
572.4k+ views
Hint:We need to find the value of $x$ at which $g(x)$ becomes zero. First, we will find \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}\] .Find the equation of the line joining the points by referring the figure and using $y=mx+b$ . Then after substitution, we will get the value of \[g(4)\] . Then find $g(x)$ using $g(x)=\int\limits_{0}^{x}{f(t)dt}$ . From this, we will get an equation and solve that to get the value of $x$ by equating $g(x)=0$ .
Complete step by step answer:
We need to find the value of $x$ at which $g(x)$ becomes zero.
From the figure, $g(x)$ decreases from $x=3$ .
Let us consider $g(4)$ .
It can be written as \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}...(a)\]
\[\int\limits_{0}^{3}{f(t)dt}\] can be written as
\[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}\]
We know that the equation of a line joining two points $y=mx+b$ ,where $m$ is the slope that is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
From figure, for the points $(0,1)$ and $(1,1)$ ,
$m=\dfrac{1-1}{1-0}=0$
Now, to get the value of $b$ , we know that $y=mx+b$ .
$\Rightarrow y=0+b=b$
Let us consider the point $(0,1)$ , then
${{b}_{1}}={{y}_{1}}=1$
Consider the point $(1,1)$ , then
${{b}_{2}}={{y}_{2}}=1$
Hence $b=1$ .
Therefore, $y=mx+b=0+1=1$
Hence \[\int\limits_{0}^{1}{f(t)}=\int\limits_{0}^{1}{1}=\left[ t \right]_{0}^{1}=1\]
From figure, for the points $(1,1)$ and $(2,3)$ ,
$m=\dfrac{3-1}{2-1}=2$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=2x+b$
Let us consider the point $(1,1)$ , then
${{b}_{1}}={{y}_{1}}-2{{x}_{1}}=1-2=-1$
Consider the point $(2,3)$ , then
${{b}_{2}}={{y}_{2}}-2{{x}_{2}}=3-4=-1$
Hence $b=-1$ .
Therefore, $y=mx+b=2x-1$
\[\int\limits_{1}^{2}{f(t)}=\int\limits_{1}^{2}{(2t-1)dt}=\left[ {{t}^{2}}-t \right]_{1}^{2}=\left[ 4-2-1+1 \right]=2\]
From figure, for the points $(2,3)$ and $(3,0)$ ,
$m=\dfrac{0-3}{3-2}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
\[\int\limits_{2}^{3}{f(t)}=\int\limits_{2}^{3}{(-3t+9)}=\left[ \dfrac{-3}{2}{{t}^{2}}+9t \right]_{2}^{3}=3\left( -\dfrac{9}{2}+27+\dfrac{4}{2}-6 \right)=\dfrac{3}{2}\]
Hence, \[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}=1+2+\dfrac{3}{2}=\dfrac{9}{2}...(i)\]
From figure, for the points $(3,0)$ and $(4,-3)$ ,
$m=\dfrac{-3-0}{4-3}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
Hence, \[\int\limits_{3}^{4}{f(t)dt}=\int\limits_{3}^{4}{(-3t+9)dt}=3\left[ -\dfrac{{{t}^{2}}}{2}+3t \right]_{3}^{4}=3\left( -8+12+\dfrac{9}{2}-9 \right)=\dfrac{-3}{2}\]
Substituting these in equation $(a)$ , we get
\[g(4)=\int\limits_{0}^{4}{f(t)dt}=\dfrac{9}{2}-\dfrac{3}{2}=3\]
Now, $g(x)=\int\limits_{0}^{x}{f(t)dt}$
That is, $g(x)=\int\limits_{0}^{4}{f(t)dt}+\int\limits_{4}^{x}{f(t)dt}$ , $4\le x\le 6$
$\Rightarrow g(x)=3+\int\limits_{4}^{x}{-3dt}$
Integrating, we get
$g(x)=3-3[t]_{4}^{x}$
$\Rightarrow g(x)=3-3x+12=-3x+15$
We need to find the value at $g(x)=0$ .
Hence, $-3x+15=0$
$\Rightarrow x=5$
Thus the value at $g(x)=0$ is $x=5$ that lies in $[0,6]$.
Hence, the correct option is A.
Note:
We need to find the equations of the line joining the corresponding points from the figure. Then only we can proceed to further steps. $y=mx+b$ and $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ are the two main equations. We will be finding the value of $x$ for $4\le x\le 6$.
Complete step by step answer:
We need to find the value of $x$ at which $g(x)$ becomes zero.
From the figure, $g(x)$ decreases from $x=3$ .
Let us consider $g(4)$ .
It can be written as \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}...(a)\]
\[\int\limits_{0}^{3}{f(t)dt}\] can be written as
\[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}\]
We know that the equation of a line joining two points $y=mx+b$ ,where $m$ is the slope that is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
From figure, for the points $(0,1)$ and $(1,1)$ ,
$m=\dfrac{1-1}{1-0}=0$
Now, to get the value of $b$ , we know that $y=mx+b$ .
$\Rightarrow y=0+b=b$
Let us consider the point $(0,1)$ , then
${{b}_{1}}={{y}_{1}}=1$
Consider the point $(1,1)$ , then
${{b}_{2}}={{y}_{2}}=1$
Hence $b=1$ .
Therefore, $y=mx+b=0+1=1$
Hence \[\int\limits_{0}^{1}{f(t)}=\int\limits_{0}^{1}{1}=\left[ t \right]_{0}^{1}=1\]
From figure, for the points $(1,1)$ and $(2,3)$ ,
$m=\dfrac{3-1}{2-1}=2$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=2x+b$
Let us consider the point $(1,1)$ , then
${{b}_{1}}={{y}_{1}}-2{{x}_{1}}=1-2=-1$
Consider the point $(2,3)$ , then
${{b}_{2}}={{y}_{2}}-2{{x}_{2}}=3-4=-1$
Hence $b=-1$ .
Therefore, $y=mx+b=2x-1$
\[\int\limits_{1}^{2}{f(t)}=\int\limits_{1}^{2}{(2t-1)dt}=\left[ {{t}^{2}}-t \right]_{1}^{2}=\left[ 4-2-1+1 \right]=2\]
From figure, for the points $(2,3)$ and $(3,0)$ ,
$m=\dfrac{0-3}{3-2}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
\[\int\limits_{2}^{3}{f(t)}=\int\limits_{2}^{3}{(-3t+9)}=\left[ \dfrac{-3}{2}{{t}^{2}}+9t \right]_{2}^{3}=3\left( -\dfrac{9}{2}+27+\dfrac{4}{2}-6 \right)=\dfrac{3}{2}\]
Hence, \[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}=1+2+\dfrac{3}{2}=\dfrac{9}{2}...(i)\]
From figure, for the points $(3,0)$ and $(4,-3)$ ,
$m=\dfrac{-3-0}{4-3}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
Hence, \[\int\limits_{3}^{4}{f(t)dt}=\int\limits_{3}^{4}{(-3t+9)dt}=3\left[ -\dfrac{{{t}^{2}}}{2}+3t \right]_{3}^{4}=3\left( -8+12+\dfrac{9}{2}-9 \right)=\dfrac{-3}{2}\]
Substituting these in equation $(a)$ , we get
\[g(4)=\int\limits_{0}^{4}{f(t)dt}=\dfrac{9}{2}-\dfrac{3}{2}=3\]
Now, $g(x)=\int\limits_{0}^{x}{f(t)dt}$
That is, $g(x)=\int\limits_{0}^{4}{f(t)dt}+\int\limits_{4}^{x}{f(t)dt}$ , $4\le x\le 6$
$\Rightarrow g(x)=3+\int\limits_{4}^{x}{-3dt}$
Integrating, we get
$g(x)=3-3[t]_{4}^{x}$
$\Rightarrow g(x)=3-3x+12=-3x+15$
We need to find the value at $g(x)=0$ .
Hence, $-3x+15=0$
$\Rightarrow x=5$
Thus the value at $g(x)=0$ is $x=5$ that lies in $[0,6]$.
Hence, the correct option is A.
Note:
We need to find the equations of the line joining the corresponding points from the figure. Then only we can proceed to further steps. $y=mx+b$ and $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ are the two main equations. We will be finding the value of $x$ for $4\le x\le 6$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

