
The value of $x$ at which $g(x)$ becomes zero, is
A. $3$
B. $4$
C. $5$
D. $6$
Answer
585.9k+ views
Hint:We need to find the value of $x$ at which $g(x)$ becomes zero. First, we will find \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}\] .Find the equation of the line joining the points by referring the figure and using $y=mx+b$ . Then after substitution, we will get the value of \[g(4)\] . Then find $g(x)$ using $g(x)=\int\limits_{0}^{x}{f(t)dt}$ . From this, we will get an equation and solve that to get the value of $x$ by equating $g(x)=0$ .
Complete step by step answer:
We need to find the value of $x$ at which $g(x)$ becomes zero.
From the figure, $g(x)$ decreases from $x=3$ .
Let us consider $g(4)$ .
It can be written as \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}...(a)\]
\[\int\limits_{0}^{3}{f(t)dt}\] can be written as
\[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}\]
We know that the equation of a line joining two points $y=mx+b$ ,where $m$ is the slope that is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
From figure, for the points $(0,1)$ and $(1,1)$ ,
$m=\dfrac{1-1}{1-0}=0$
Now, to get the value of $b$ , we know that $y=mx+b$ .
$\Rightarrow y=0+b=b$
Let us consider the point $(0,1)$ , then
${{b}_{1}}={{y}_{1}}=1$
Consider the point $(1,1)$ , then
${{b}_{2}}={{y}_{2}}=1$
Hence $b=1$ .
Therefore, $y=mx+b=0+1=1$
Hence \[\int\limits_{0}^{1}{f(t)}=\int\limits_{0}^{1}{1}=\left[ t \right]_{0}^{1}=1\]
From figure, for the points $(1,1)$ and $(2,3)$ ,
$m=\dfrac{3-1}{2-1}=2$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=2x+b$
Let us consider the point $(1,1)$ , then
${{b}_{1}}={{y}_{1}}-2{{x}_{1}}=1-2=-1$
Consider the point $(2,3)$ , then
${{b}_{2}}={{y}_{2}}-2{{x}_{2}}=3-4=-1$
Hence $b=-1$ .
Therefore, $y=mx+b=2x-1$
\[\int\limits_{1}^{2}{f(t)}=\int\limits_{1}^{2}{(2t-1)dt}=\left[ {{t}^{2}}-t \right]_{1}^{2}=\left[ 4-2-1+1 \right]=2\]
From figure, for the points $(2,3)$ and $(3,0)$ ,
$m=\dfrac{0-3}{3-2}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
\[\int\limits_{2}^{3}{f(t)}=\int\limits_{2}^{3}{(-3t+9)}=\left[ \dfrac{-3}{2}{{t}^{2}}+9t \right]_{2}^{3}=3\left( -\dfrac{9}{2}+27+\dfrac{4}{2}-6 \right)=\dfrac{3}{2}\]
Hence, \[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}=1+2+\dfrac{3}{2}=\dfrac{9}{2}...(i)\]
From figure, for the points $(3,0)$ and $(4,-3)$ ,
$m=\dfrac{-3-0}{4-3}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
Hence, \[\int\limits_{3}^{4}{f(t)dt}=\int\limits_{3}^{4}{(-3t+9)dt}=3\left[ -\dfrac{{{t}^{2}}}{2}+3t \right]_{3}^{4}=3\left( -8+12+\dfrac{9}{2}-9 \right)=\dfrac{-3}{2}\]
Substituting these in equation $(a)$ , we get
\[g(4)=\int\limits_{0}^{4}{f(t)dt}=\dfrac{9}{2}-\dfrac{3}{2}=3\]
Now, $g(x)=\int\limits_{0}^{x}{f(t)dt}$
That is, $g(x)=\int\limits_{0}^{4}{f(t)dt}+\int\limits_{4}^{x}{f(t)dt}$ , $4\le x\le 6$
$\Rightarrow g(x)=3+\int\limits_{4}^{x}{-3dt}$
Integrating, we get
$g(x)=3-3[t]_{4}^{x}$
$\Rightarrow g(x)=3-3x+12=-3x+15$
We need to find the value at $g(x)=0$ .
Hence, $-3x+15=0$
$\Rightarrow x=5$
Thus the value at $g(x)=0$ is $x=5$ that lies in $[0,6]$.
Hence, the correct option is A.
Note:
We need to find the equations of the line joining the corresponding points from the figure. Then only we can proceed to further steps. $y=mx+b$ and $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ are the two main equations. We will be finding the value of $x$ for $4\le x\le 6$.
Complete step by step answer:
We need to find the value of $x$ at which $g(x)$ becomes zero.
From the figure, $g(x)$ decreases from $x=3$ .
Let us consider $g(4)$ .
It can be written as \[g(4)=\int\limits_{0}^{4}{f(t)dt}=\int\limits_{0}^{3}{f(t)dt}+\int\limits_{3}^{4}{f(t)dt}...(a)\]
\[\int\limits_{0}^{3}{f(t)dt}\] can be written as
\[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}\]
We know that the equation of a line joining two points $y=mx+b$ ,where $m$ is the slope that is given by $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
From figure, for the points $(0,1)$ and $(1,1)$ ,
$m=\dfrac{1-1}{1-0}=0$
Now, to get the value of $b$ , we know that $y=mx+b$ .
$\Rightarrow y=0+b=b$
Let us consider the point $(0,1)$ , then
${{b}_{1}}={{y}_{1}}=1$
Consider the point $(1,1)$ , then
${{b}_{2}}={{y}_{2}}=1$
Hence $b=1$ .
Therefore, $y=mx+b=0+1=1$
Hence \[\int\limits_{0}^{1}{f(t)}=\int\limits_{0}^{1}{1}=\left[ t \right]_{0}^{1}=1\]
From figure, for the points $(1,1)$ and $(2,3)$ ,
$m=\dfrac{3-1}{2-1}=2$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=2x+b$
Let us consider the point $(1,1)$ , then
${{b}_{1}}={{y}_{1}}-2{{x}_{1}}=1-2=-1$
Consider the point $(2,3)$ , then
${{b}_{2}}={{y}_{2}}-2{{x}_{2}}=3-4=-1$
Hence $b=-1$ .
Therefore, $y=mx+b=2x-1$
\[\int\limits_{1}^{2}{f(t)}=\int\limits_{1}^{2}{(2t-1)dt}=\left[ {{t}^{2}}-t \right]_{1}^{2}=\left[ 4-2-1+1 \right]=2\]
From figure, for the points $(2,3)$ and $(3,0)$ ,
$m=\dfrac{0-3}{3-2}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
\[\int\limits_{2}^{3}{f(t)}=\int\limits_{2}^{3}{(-3t+9)}=\left[ \dfrac{-3}{2}{{t}^{2}}+9t \right]_{2}^{3}=3\left( -\dfrac{9}{2}+27+\dfrac{4}{2}-6 \right)=\dfrac{3}{2}\]
Hence, \[\int\limits_{0}^{3}{f(t)dt}=\int\limits_{0}^{1}{f(t)}+\int\limits_{1}^{2}{f(t)}+\int\limits_{2}^{3}{f(t)}=1+2+\dfrac{3}{2}=\dfrac{9}{2}...(i)\]
From figure, for the points $(3,0)$ and $(4,-3)$ ,
$m=\dfrac{-3-0}{4-3}=-3$
Now, to get the value of $b$ , we know that $y=mx+b$ .
That is, $y=-3x+b$
For the point $(2,3)$ , ${{b}_{1}}={{y}_{1}}+3{{x}_{1}}=3+6=9$
For the point $(3,0)$ , ${{b}_{2}}={{y}_{2}}+3{{x}_{2}}=0+9=9$
Hence $b=9$ .
Therefore, $y=mx+b=-3x+9$
Hence, \[\int\limits_{3}^{4}{f(t)dt}=\int\limits_{3}^{4}{(-3t+9)dt}=3\left[ -\dfrac{{{t}^{2}}}{2}+3t \right]_{3}^{4}=3\left( -8+12+\dfrac{9}{2}-9 \right)=\dfrac{-3}{2}\]
Substituting these in equation $(a)$ , we get
\[g(4)=\int\limits_{0}^{4}{f(t)dt}=\dfrac{9}{2}-\dfrac{3}{2}=3\]
Now, $g(x)=\int\limits_{0}^{x}{f(t)dt}$
That is, $g(x)=\int\limits_{0}^{4}{f(t)dt}+\int\limits_{4}^{x}{f(t)dt}$ , $4\le x\le 6$
$\Rightarrow g(x)=3+\int\limits_{4}^{x}{-3dt}$
Integrating, we get
$g(x)=3-3[t]_{4}^{x}$
$\Rightarrow g(x)=3-3x+12=-3x+15$
We need to find the value at $g(x)=0$ .
Hence, $-3x+15=0$
$\Rightarrow x=5$
Thus the value at $g(x)=0$ is $x=5$ that lies in $[0,6]$.
Hence, the correct option is A.
Note:
We need to find the equations of the line joining the corresponding points from the figure. Then only we can proceed to further steps. $y=mx+b$ and $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ are the two main equations. We will be finding the value of $x$ for $4\le x\le 6$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

