
The value of universal gravitational constant on earth for a particle of mass 5 kgs is:
A. \[6.67\times {{10}^{-11}}\]
B. \[6.67\times {{10}^{-7}}\]
C. \[5\times 6.67\times {{10}^{-11}}\]
D. \[6.67\times {{10}^{-23}}\]
Answer
589.8k+ views
Hint: The universal gravitational constant is the proportionality constant used in Newton’s Law of Universal Gravitation. It is commonly denoted by G. It is different from g, which denotes the acceleration due to gravity.
Complete step by step answer:
According to Newton's law of universal gravitation, the force of gravitational attraction is given by,
\[F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}\]
Where,
F = gravitational force of attraction
G = universal gravitational constant
$m_1$ = mass of an object
$m_2$ = mass of another object
r = distance between two objects
Which can be written as,
\[G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}\]
The universal gravitational constant (G) relates the magnitude of the gravitational attraction force between two bodies to their masses and the distance between them. Its value is extremely difficult to measure experimentally.
Since the universal gravitational constant (G) is a universal constant and its value is independent of the masses or place wherever the masses are situated.
So, its value remains constant i.e., \[6.67\times {{10}^{-11}}N{{m}^{2}}/k{{g}^{2}}\]
Hence, the correct option is A, i.e., \[6.67\times {{10}^{-11}}\]
Additional Information:
The gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a relatively greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases. If the mass of one of the objects is doubled, then the force of gravity between them is also doubled.
Note: Students should understand Newton's Law of Universal Gravitation and thereafter they need to know how to define the universal gravitational constant (G). Students should also keep in mind that its value remains unchanged with various ranges of masses, distances and places. Students do not need to confuse between G (universal gravitational constant) and g (acceleration due to gravity).
Complete step by step answer:
According to Newton's law of universal gravitation, the force of gravitational attraction is given by,
\[F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}\]
Where,
F = gravitational force of attraction
G = universal gravitational constant
$m_1$ = mass of an object
$m_2$ = mass of another object
r = distance between two objects
Which can be written as,
\[G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}\]
The universal gravitational constant (G) relates the magnitude of the gravitational attraction force between two bodies to their masses and the distance between them. Its value is extremely difficult to measure experimentally.
Since the universal gravitational constant (G) is a universal constant and its value is independent of the masses or place wherever the masses are situated.
So, its value remains constant i.e., \[6.67\times {{10}^{-11}}N{{m}^{2}}/k{{g}^{2}}\]
Hence, the correct option is A, i.e., \[6.67\times {{10}^{-11}}\]
Additional Information:
The gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a relatively greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases. If the mass of one of the objects is doubled, then the force of gravity between them is also doubled.
Note: Students should understand Newton's Law of Universal Gravitation and thereafter they need to know how to define the universal gravitational constant (G). Students should also keep in mind that its value remains unchanged with various ranges of masses, distances and places. Students do not need to confuse between G (universal gravitational constant) and g (acceleration due to gravity).
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

