
The value of trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is equal to
(a) \[\dfrac{1}{4}\]
(b) \[\dfrac{1}{16}\]
(c) \[\dfrac{3}{4}\]
(d) \[\dfrac{5}{16}\]
Answer
603k+ views
Hint: Convert all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. Simplify the given expression by substituting the values of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\], which are \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Complete step-by-step answer:
We have to calculate the value of \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\].
We will firstly simplify the given expression by writing all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. We can write \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] and \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})\].
We know that \[\sin \left( {{180}^{\circ }}-x \right)=\sin x\].
Thus, we have \[\sin ({{180}^{\circ }}-{{72}^{\circ }})=\sin {{72}^{\circ }}\] and \[\sin ({{180}^{\circ }}-{{36}^{\circ }})=\sin {{36}^{\circ }}\].
So, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}\].
We know that \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Substituting the above values, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}\].
Simplifying the above equation, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}\].
We know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Substituting \[a=10,b=2\sqrt{5}\] in the above equation, we have \[\left( 10+2\sqrt{5} \right)\left( 10-2\sqrt{5} \right)={{\left( 10 \right)}^{2}}-{{\left( 2\sqrt{5} \right)}^{2}}=100-20=80\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}=\dfrac{80}{256}=\dfrac{5}{16}\].
Hence, the value of the trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is \[\dfrac{5}{16}\], which is option (d).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).
Note: To calculate the value of the given trigonometric expression, one must know the value of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\]. If not, we can calculate the value of \[\sin {{36}^{\circ }}\] by calculating the value of \[\sin {{18}^{\circ }}\] using the fact that if \[x={{18}^{\circ }}\], we have \[5x={{90}^{\circ }}\]. We can then use the trigonometric identity $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$ to calculate the value of \[\sin {{36}^{\circ }}\]. To calculate the value of \[\sin {{72}^{\circ }}\], we have to calculate the value of $\cos {{18}^{\circ }}$ and then use the identity $\sin x=\cos \left( {{90}^{\circ }}-x \right)$. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to calculate the value of \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\].
We will firstly simplify the given expression by writing all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. We can write \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] and \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})\].
We know that \[\sin \left( {{180}^{\circ }}-x \right)=\sin x\].
Thus, we have \[\sin ({{180}^{\circ }}-{{72}^{\circ }})=\sin {{72}^{\circ }}\] and \[\sin ({{180}^{\circ }}-{{36}^{\circ }})=\sin {{36}^{\circ }}\].
So, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}\].
We know that \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Substituting the above values, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}\].
Simplifying the above equation, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}\].
We know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Substituting \[a=10,b=2\sqrt{5}\] in the above equation, we have \[\left( 10+2\sqrt{5} \right)\left( 10-2\sqrt{5} \right)={{\left( 10 \right)}^{2}}-{{\left( 2\sqrt{5} \right)}^{2}}=100-20=80\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}=\dfrac{80}{256}=\dfrac{5}{16}\].
Hence, the value of the trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is \[\dfrac{5}{16}\], which is option (d).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).
Note: To calculate the value of the given trigonometric expression, one must know the value of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\]. If not, we can calculate the value of \[\sin {{36}^{\circ }}\] by calculating the value of \[\sin {{18}^{\circ }}\] using the fact that if \[x={{18}^{\circ }}\], we have \[5x={{90}^{\circ }}\]. We can then use the trigonometric identity $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$ to calculate the value of \[\sin {{36}^{\circ }}\]. To calculate the value of \[\sin {{72}^{\circ }}\], we have to calculate the value of $\cos {{18}^{\circ }}$ and then use the identity $\sin x=\cos \left( {{90}^{\circ }}-x \right)$. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

