
The value of trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is equal to
(a) \[\dfrac{1}{4}\]
(b) \[\dfrac{1}{16}\]
(c) \[\dfrac{3}{4}\]
(d) \[\dfrac{5}{16}\]
Answer
616.8k+ views
Hint: Convert all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. Simplify the given expression by substituting the values of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\], which are \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Complete step-by-step answer:
We have to calculate the value of \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\].
We will firstly simplify the given expression by writing all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. We can write \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] and \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})\].
We know that \[\sin \left( {{180}^{\circ }}-x \right)=\sin x\].
Thus, we have \[\sin ({{180}^{\circ }}-{{72}^{\circ }})=\sin {{72}^{\circ }}\] and \[\sin ({{180}^{\circ }}-{{36}^{\circ }})=\sin {{36}^{\circ }}\].
So, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}\].
We know that \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Substituting the above values, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}\].
Simplifying the above equation, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}\].
We know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Substituting \[a=10,b=2\sqrt{5}\] in the above equation, we have \[\left( 10+2\sqrt{5} \right)\left( 10-2\sqrt{5} \right)={{\left( 10 \right)}^{2}}-{{\left( 2\sqrt{5} \right)}^{2}}=100-20=80\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}=\dfrac{80}{256}=\dfrac{5}{16}\].
Hence, the value of the trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is \[\dfrac{5}{16}\], which is option (d).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).
Note: To calculate the value of the given trigonometric expression, one must know the value of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\]. If not, we can calculate the value of \[\sin {{36}^{\circ }}\] by calculating the value of \[\sin {{18}^{\circ }}\] using the fact that if \[x={{18}^{\circ }}\], we have \[5x={{90}^{\circ }}\]. We can then use the trigonometric identity $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$ to calculate the value of \[\sin {{36}^{\circ }}\]. To calculate the value of \[\sin {{72}^{\circ }}\], we have to calculate the value of $\cos {{18}^{\circ }}$ and then use the identity $\sin x=\cos \left( {{90}^{\circ }}-x \right)$. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to calculate the value of \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\].
We will firstly simplify the given expression by writing all the angles in the range of \[{{0}^{\circ }}-{{90}^{\circ }}\]. We can write \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] and \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})\].
We know that \[\sin \left( {{180}^{\circ }}-x \right)=\sin x\].
Thus, we have \[\sin ({{180}^{\circ }}-{{72}^{\circ }})=\sin {{72}^{\circ }}\] and \[\sin ({{180}^{\circ }}-{{36}^{\circ }})=\sin {{36}^{\circ }}\].
So, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}\].
We know that \[\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4}\] and \[\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}\].
Substituting the above values, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}\].
Simplifying the above equation, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}\].
We know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Substituting \[a=10,b=2\sqrt{5}\] in the above equation, we have \[\left( 10+2\sqrt{5} \right)\left( 10-2\sqrt{5} \right)={{\left( 10 \right)}^{2}}-{{\left( 2\sqrt{5} \right)}^{2}}=100-20=80\].
Thus, we have \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}=\dfrac{80}{256}=\dfrac{5}{16}\].
Hence, the value of the trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}\] is \[\dfrac{5}{16}\], which is option (d).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).
Note: To calculate the value of the given trigonometric expression, one must know the value of \[\sin {{36}^{\circ }}\] and \[\sin {{72}^{\circ }}\]. If not, we can calculate the value of \[\sin {{36}^{\circ }}\] by calculating the value of \[\sin {{18}^{\circ }}\] using the fact that if \[x={{18}^{\circ }}\], we have \[5x={{90}^{\circ }}\]. We can then use the trigonometric identity $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$ to calculate the value of \[\sin {{36}^{\circ }}\]. To calculate the value of \[\sin {{72}^{\circ }}\], we have to calculate the value of $\cos {{18}^{\circ }}$ and then use the identity $\sin x=\cos \left( {{90}^{\circ }}-x \right)$. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

