
The value of the integral \[\int{{{x}^{x}}\ln \left( ex \right)dx}\] is equal to:
\[\left( \text{a} \right)\text{ }{{x}^{x}}+C\]
\[\left( \text{b} \right)\text{ }x.\ln x+C\]
\[\left( \text{c} \right)\text{ }{{\left( \ln x \right)}^{x}}+C\]
\[\left( \text{d} \right)\text{ }{{x}^{\ln x}}+C\]
Answer
584.7k+ views
Hint: To solve the given question, we will first consider that the value of \[{{x}^{x}}=t.\] Then we will find the value of dx by differentiating \[{{x}^{x}}=t\] on both sides with respect to x. For differentiating it, we will take a natural logarithm on both sides, i.e. x log x = log t, and then we will differentiate it and find the value of x. Now, we will put the values of \[{{x}^{x}}\] and dx in the integral and solve it.
Complete step by step answer:
We can see that, in the integration, the terms given are very different, i.e. \[{{x}^{x}}\] and ln(ex) are not simple functions. So, we cannot apply by parts to solve the integral. Thus, the only option left for us is to do substitution in the integral. So, we will consider that, \[{{x}^{x}}=t.\] Thus, we have,
\[{{x}^{x}}=t......\left( i \right)\]
Now, we will differentiate both sides of the equation (i) with respect to x. Now there is no direct method of differentiation of the function \[{{x}^{x}}.\] So, we will take a natural logarithm on both sides. Thus we will get,
\[{{\log }_{e}}\left( {{x}^{x}} \right)={{\log }_{e}}t....\left( ii \right)\]
In the above equation, we are going to use a logarithmic identity shown below,
\[\log {{a}^{b}}=b\log a\]
Thus, we will get,
\[x{{\log }_{e}}x={{\log }_{e}}t\]
Now, we will differentiate both sides.
\[\dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]=\dfrac{d}{dx}\left[ {{\log }_{e}}t \right]....\left( iii \right)\]
Now, to find the derivative of \[x{{\log }_{e}}x\] we will use the product rule which says that,
\[\dfrac{d}{dx}\left[ f\left( x \right).g\left( x \right) \right]=g\left( x \right)\left[ \dfrac{d}{dx}f\left( x \right) \right]+f\left( x \right)\left[ \dfrac{d}{dx}g\left( x \right) \right]\]
Thus, we have,
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x\left[ \dfrac{d}{dx}\left( x \right) \right]+x\left[ \dfrac{d}{dx}\left( {{\log }_{e}}x \right) \right]\]
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x\left( 1 \right)+x\dfrac{d}{dx}\left( {{\log }_{e}}x \right)\]
The differentiation of log x is \[\dfrac{1}{x}.\] So, we have,
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x+x\left( \dfrac{1}{x} \right)\]
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x+1.....\left( iv \right)\]
From (iii) and (iv), we have,
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{d}{dx}\left[ {{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{d}{dt}\times \dfrac{dt}{dx}\left[ {{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{dt}{dx}\left[ \dfrac{d}{dt}{{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{dt}{dx}.\dfrac{1}{t}\]
\[\Rightarrow \left( {{\log }_{e}}x+1 \right)dx=\dfrac{dt}{t}\]
\[\Rightarrow dx=\dfrac{dt}{t\left( {{\log }_{e}}x+1 \right)}.....\left( v \right)\]
Now, we will put the values of \[{{x}^{x}}\] and dx in the integral given in the question.
\[\int{{{x}^{x}}\ln \left( ex \right)dx}=\int{t.\ln \left( ex \right).\dfrac{dt}{t\left( {{\log }_{e}}x+1 \right)}}\]
\[\Rightarrow \int{{{x}^{x}}\ln \left( ex \right)dx}=\int{\dfrac{\ln \left( ex \right)dt}{{{\log }_{e}}x+1}}\]
Now, we will use an exponential identity shown below,
\[{{\log }_{a}}b+1={{\log }_{a}}ab\]
Thus, we will get,
\[\Rightarrow \int{{{x}^{x}}\ln \left( ex \right)dx=\int{\dfrac{\log \left( ex \right)dt}{\log \left( ex \right)}}}\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}=\int{dt}\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}=t+C\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}={{x}^{x}}+C\left[ \text{From }\left( i \right) \right]\]
Hence, option (a) is the right answer.
Note: In the solution, we have used the identity, \[\log {{a}^{b}}=b\log a.\] We cannot use this identity everywhere. To use this identity, a should be greater than 0. Also, for the product rule, the functions f(x) and g(x) should be differentiable in the given domain.
Complete step by step answer:
We can see that, in the integration, the terms given are very different, i.e. \[{{x}^{x}}\] and ln(ex) are not simple functions. So, we cannot apply by parts to solve the integral. Thus, the only option left for us is to do substitution in the integral. So, we will consider that, \[{{x}^{x}}=t.\] Thus, we have,
\[{{x}^{x}}=t......\left( i \right)\]
Now, we will differentiate both sides of the equation (i) with respect to x. Now there is no direct method of differentiation of the function \[{{x}^{x}}.\] So, we will take a natural logarithm on both sides. Thus we will get,
\[{{\log }_{e}}\left( {{x}^{x}} \right)={{\log }_{e}}t....\left( ii \right)\]
In the above equation, we are going to use a logarithmic identity shown below,
\[\log {{a}^{b}}=b\log a\]
Thus, we will get,
\[x{{\log }_{e}}x={{\log }_{e}}t\]
Now, we will differentiate both sides.
\[\dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]=\dfrac{d}{dx}\left[ {{\log }_{e}}t \right]....\left( iii \right)\]
Now, to find the derivative of \[x{{\log }_{e}}x\] we will use the product rule which says that,
\[\dfrac{d}{dx}\left[ f\left( x \right).g\left( x \right) \right]=g\left( x \right)\left[ \dfrac{d}{dx}f\left( x \right) \right]+f\left( x \right)\left[ \dfrac{d}{dx}g\left( x \right) \right]\]
Thus, we have,
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x\left[ \dfrac{d}{dx}\left( x \right) \right]+x\left[ \dfrac{d}{dx}\left( {{\log }_{e}}x \right) \right]\]
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x\left( 1 \right)+x\dfrac{d}{dx}\left( {{\log }_{e}}x \right)\]
The differentiation of log x is \[\dfrac{1}{x}.\] So, we have,
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x+x\left( \dfrac{1}{x} \right)\]
\[\Rightarrow \dfrac{d}{dx}\left[ x{{\log }_{e}}x \right]={{\log }_{e}}x+1.....\left( iv \right)\]
From (iii) and (iv), we have,
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{d}{dx}\left[ {{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{d}{dt}\times \dfrac{dt}{dx}\left[ {{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{dt}{dx}\left[ \dfrac{d}{dt}{{\log }_{e}}t \right]\]
\[\Rightarrow {{\log }_{e}}x+1=\dfrac{dt}{dx}.\dfrac{1}{t}\]
\[\Rightarrow \left( {{\log }_{e}}x+1 \right)dx=\dfrac{dt}{t}\]
\[\Rightarrow dx=\dfrac{dt}{t\left( {{\log }_{e}}x+1 \right)}.....\left( v \right)\]
Now, we will put the values of \[{{x}^{x}}\] and dx in the integral given in the question.
\[\int{{{x}^{x}}\ln \left( ex \right)dx}=\int{t.\ln \left( ex \right).\dfrac{dt}{t\left( {{\log }_{e}}x+1 \right)}}\]
\[\Rightarrow \int{{{x}^{x}}\ln \left( ex \right)dx}=\int{\dfrac{\ln \left( ex \right)dt}{{{\log }_{e}}x+1}}\]
Now, we will use an exponential identity shown below,
\[{{\log }_{a}}b+1={{\log }_{a}}ab\]
Thus, we will get,
\[\Rightarrow \int{{{x}^{x}}\ln \left( ex \right)dx=\int{\dfrac{\log \left( ex \right)dt}{\log \left( ex \right)}}}\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}=\int{dt}\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}=t+C\]
\[\Rightarrow \int{{{x}^{x}}\log \left( ex \right)dx}={{x}^{x}}+C\left[ \text{From }\left( i \right) \right]\]
Hence, option (a) is the right answer.
Note: In the solution, we have used the identity, \[\log {{a}^{b}}=b\log a.\] We cannot use this identity everywhere. To use this identity, a should be greater than 0. Also, for the product rule, the functions f(x) and g(x) should be differentiable in the given domain.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

