
The value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} \left( {b > 0} \right)$ is
Answer
511.5k+ views
Hint: We will first express the integral as $I\left( b \right)$, then use the method of differentiation under the integral sign to simplify the given integral. That is, take the differentiation of the expression with respect to $b$. Then, we will get a simplified expression of $I'\left( b \right)$. Next, integrate the function with respect to $x$.
Complete step-by-step answer:
We have to find the value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $, where $\left( {b > 0} \right)$
Let this integral be denoted by $I\left( b \right)$
That is,
$I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $ (1)
Here, we will follow the method of differentiation under the integral sign to simplify the given integral.
Let us take the derivative of $I\left( b \right)$ with respect to $b$
That is, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
According to the Leibniz Rule, $\dfrac{d}{{dx}}\int\limits_a^b {f\left( {x,y} \right)dx} = \int\limits_a^b {{f_x}\left( {x,y} \right)dx} $
That is, the derivative of an integral function of two variables is equal to the integral of partial derivatives of that function.
Then, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} = \int\limits_0^1 {\dfrac{\delta }{{\delta b}}\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Which then simplifies to $I'\left( b \right) = \int\limits_0^1 {\dfrac{{\log \left( x \right){x^b}}}{{\log x}}dx} $ because if \[y = {a^x}\] then \[\dfrac{{dy}}{{dx}} = b\left( {\ln x} \right)\]
Therefore, we get the differentiation as,
$I'\left( b \right) = \int\limits_0^1 {{x^b}dx} $
We can simplify the value of $I'\left( b \right)$ by integrating the function ${x^b}dx$ with respect to $x$
$I'\left( b \right) = \left[ {\dfrac{{{x^{b + 1}}}}{{b + 1}}} \right]_{x = 0}^{x = 1}$
On putting the limits we’ll, get
$I'\left( b \right) = \left[ {\dfrac{{{1^{b + 1}} - {0^{b + 1}}}}{{b + 1}}} \right] = \dfrac{1}{{b + 1}}$
We will now integrate the above expression to find the value of $I\left( b \right)$
$I\left( b \right) = \int {\dfrac{1}{{b + 1}}db} = \log \left( {b + 1} \right) + c$, where $c$ is the constant.
$I\left( b \right) = \log \left( {b + 1} \right) + c$ (2)
We have to find the value of the $c$
We have the function $I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Put $b = 0$ in the above equation to find the value of $I\left( b \right)$
$
I\left( 0 \right) = \int\limits_0^1 {\dfrac{{{x^0} - 1}}{{\log x}}dx} \\
= 0 \\
$
Hence, $b = 0$, we get $I\left( b \right) = 0$
Therefore, on substituting the value of $b = 0$ and $I\left( b \right) = 0$ in equation (2)
$
0 = \log \left( {0 + 1} \right) + c \\
0 = 0 + c \\
c = 0 \\
$
Thus, $I\left( b \right) = \log \left( {b + 1} \right)$.
Note: We use differentiation under integral sign to find certain integrals. It allows us to interchange the order of integration and differentiation. To use this method, the function $f\left( {x,t} \right)$ should be continuous and a partial derivative should exist.
Complete step-by-step answer:
We have to find the value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $, where $\left( {b > 0} \right)$
Let this integral be denoted by $I\left( b \right)$
That is,
$I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $ (1)
Here, we will follow the method of differentiation under the integral sign to simplify the given integral.
Let us take the derivative of $I\left( b \right)$ with respect to $b$
That is, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
According to the Leibniz Rule, $\dfrac{d}{{dx}}\int\limits_a^b {f\left( {x,y} \right)dx} = \int\limits_a^b {{f_x}\left( {x,y} \right)dx} $
That is, the derivative of an integral function of two variables is equal to the integral of partial derivatives of that function.
Then, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} = \int\limits_0^1 {\dfrac{\delta }{{\delta b}}\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Which then simplifies to $I'\left( b \right) = \int\limits_0^1 {\dfrac{{\log \left( x \right){x^b}}}{{\log x}}dx} $ because if \[y = {a^x}\] then \[\dfrac{{dy}}{{dx}} = b\left( {\ln x} \right)\]
Therefore, we get the differentiation as,
$I'\left( b \right) = \int\limits_0^1 {{x^b}dx} $
We can simplify the value of $I'\left( b \right)$ by integrating the function ${x^b}dx$ with respect to $x$
$I'\left( b \right) = \left[ {\dfrac{{{x^{b + 1}}}}{{b + 1}}} \right]_{x = 0}^{x = 1}$
On putting the limits we’ll, get
$I'\left( b \right) = \left[ {\dfrac{{{1^{b + 1}} - {0^{b + 1}}}}{{b + 1}}} \right] = \dfrac{1}{{b + 1}}$
We will now integrate the above expression to find the value of $I\left( b \right)$
$I\left( b \right) = \int {\dfrac{1}{{b + 1}}db} = \log \left( {b + 1} \right) + c$, where $c$ is the constant.
$I\left( b \right) = \log \left( {b + 1} \right) + c$ (2)
We have to find the value of the $c$
We have the function $I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Put $b = 0$ in the above equation to find the value of $I\left( b \right)$
$
I\left( 0 \right) = \int\limits_0^1 {\dfrac{{{x^0} - 1}}{{\log x}}dx} \\
= 0 \\
$
Hence, $b = 0$, we get $I\left( b \right) = 0$
Therefore, on substituting the value of $b = 0$ and $I\left( b \right) = 0$ in equation (2)
$
0 = \log \left( {0 + 1} \right) + c \\
0 = 0 + c \\
c = 0 \\
$
Thus, $I\left( b \right) = \log \left( {b + 1} \right)$.
Note: We use differentiation under integral sign to find certain integrals. It allows us to interchange the order of integration and differentiation. To use this method, the function $f\left( {x,t} \right)$ should be continuous and a partial derivative should exist.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
