
The value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} \left( {b > 0} \right)$ is
Answer
590.1k+ views
Hint: We will first express the integral as $I\left( b \right)$, then use the method of differentiation under the integral sign to simplify the given integral. That is, take the differentiation of the expression with respect to $b$. Then, we will get a simplified expression of $I'\left( b \right)$. Next, integrate the function with respect to $x$.
Complete step-by-step answer:
We have to find the value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $, where $\left( {b > 0} \right)$
Let this integral be denoted by $I\left( b \right)$
That is,
$I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $ (1)
Here, we will follow the method of differentiation under the integral sign to simplify the given integral.
Let us take the derivative of $I\left( b \right)$ with respect to $b$
That is, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
According to the Leibniz Rule, $\dfrac{d}{{dx}}\int\limits_a^b {f\left( {x,y} \right)dx} = \int\limits_a^b {{f_x}\left( {x,y} \right)dx} $
That is, the derivative of an integral function of two variables is equal to the integral of partial derivatives of that function.
Then, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} = \int\limits_0^1 {\dfrac{\delta }{{\delta b}}\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Which then simplifies to $I'\left( b \right) = \int\limits_0^1 {\dfrac{{\log \left( x \right){x^b}}}{{\log x}}dx} $ because if \[y = {a^x}\] then \[\dfrac{{dy}}{{dx}} = b\left( {\ln x} \right)\]
Therefore, we get the differentiation as,
$I'\left( b \right) = \int\limits_0^1 {{x^b}dx} $
We can simplify the value of $I'\left( b \right)$ by integrating the function ${x^b}dx$ with respect to $x$
$I'\left( b \right) = \left[ {\dfrac{{{x^{b + 1}}}}{{b + 1}}} \right]_{x = 0}^{x = 1}$
On putting the limits we’ll, get
$I'\left( b \right) = \left[ {\dfrac{{{1^{b + 1}} - {0^{b + 1}}}}{{b + 1}}} \right] = \dfrac{1}{{b + 1}}$
We will now integrate the above expression to find the value of $I\left( b \right)$
$I\left( b \right) = \int {\dfrac{1}{{b + 1}}db} = \log \left( {b + 1} \right) + c$, where $c$ is the constant.
$I\left( b \right) = \log \left( {b + 1} \right) + c$ (2)
We have to find the value of the $c$
We have the function $I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Put $b = 0$ in the above equation to find the value of $I\left( b \right)$
$
I\left( 0 \right) = \int\limits_0^1 {\dfrac{{{x^0} - 1}}{{\log x}}dx} \\
= 0 \\
$
Hence, $b = 0$, we get $I\left( b \right) = 0$
Therefore, on substituting the value of $b = 0$ and $I\left( b \right) = 0$ in equation (2)
$
0 = \log \left( {0 + 1} \right) + c \\
0 = 0 + c \\
c = 0 \\
$
Thus, $I\left( b \right) = \log \left( {b + 1} \right)$.
Note: We use differentiation under integral sign to find certain integrals. It allows us to interchange the order of integration and differentiation. To use this method, the function $f\left( {x,t} \right)$ should be continuous and a partial derivative should exist.
Complete step-by-step answer:
We have to find the value of the integral $\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $, where $\left( {b > 0} \right)$
Let this integral be denoted by $I\left( b \right)$
That is,
$I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $ (1)
Here, we will follow the method of differentiation under the integral sign to simplify the given integral.
Let us take the derivative of $I\left( b \right)$ with respect to $b$
That is, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
According to the Leibniz Rule, $\dfrac{d}{{dx}}\int\limits_a^b {f\left( {x,y} \right)dx} = \int\limits_a^b {{f_x}\left( {x,y} \right)dx} $
That is, the derivative of an integral function of two variables is equal to the integral of partial derivatives of that function.
Then, $I'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} = \int\limits_0^1 {\dfrac{\delta }{{\delta b}}\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Which then simplifies to $I'\left( b \right) = \int\limits_0^1 {\dfrac{{\log \left( x \right){x^b}}}{{\log x}}dx} $ because if \[y = {a^x}\] then \[\dfrac{{dy}}{{dx}} = b\left( {\ln x} \right)\]
Therefore, we get the differentiation as,
$I'\left( b \right) = \int\limits_0^1 {{x^b}dx} $
We can simplify the value of $I'\left( b \right)$ by integrating the function ${x^b}dx$ with respect to $x$
$I'\left( b \right) = \left[ {\dfrac{{{x^{b + 1}}}}{{b + 1}}} \right]_{x = 0}^{x = 1}$
On putting the limits we’ll, get
$I'\left( b \right) = \left[ {\dfrac{{{1^{b + 1}} - {0^{b + 1}}}}{{b + 1}}} \right] = \dfrac{1}{{b + 1}}$
We will now integrate the above expression to find the value of $I\left( b \right)$
$I\left( b \right) = \int {\dfrac{1}{{b + 1}}db} = \log \left( {b + 1} \right) + c$, where $c$ is the constant.
$I\left( b \right) = \log \left( {b + 1} \right) + c$ (2)
We have to find the value of the $c$
We have the function $I\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} $
Put $b = 0$ in the above equation to find the value of $I\left( b \right)$
$
I\left( 0 \right) = \int\limits_0^1 {\dfrac{{{x^0} - 1}}{{\log x}}dx} \\
= 0 \\
$
Hence, $b = 0$, we get $I\left( b \right) = 0$
Therefore, on substituting the value of $b = 0$ and $I\left( b \right) = 0$ in equation (2)
$
0 = \log \left( {0 + 1} \right) + c \\
0 = 0 + c \\
c = 0 \\
$
Thus, $I\left( b \right) = \log \left( {b + 1} \right)$.
Note: We use differentiation under integral sign to find certain integrals. It allows us to interchange the order of integration and differentiation. To use this method, the function $f\left( {x,t} \right)$ should be continuous and a partial derivative should exist.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

