
The value of the following trigonometric identity is
${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ =$
A. $-\dfrac{3}{2}$
B. $\dfrac{3}{4}$
C. $-\dfrac{3}{4}$
D. $-\dfrac{3}{8}$
Answer
618.9k+ views
Hint: We will use the identity $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $and $\ \sin A-\sin B=2\cos \dfrac{A+B}{2}.\operatorname{Sin}\dfrac{A-B}{2}$ to solve this question. First we use $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $to expand ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $and then with the help of some simple trigonometric calculation we will solve this question.
Complete step-by-step answer:
It is given that to find the value of
${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ ...............\left( 1 \right)$
We know that $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $is an identity used in trigonometric calculation.
$\begin{align}
& 4{{\sin }^{3}}A\ =3\sin A-\sin 3A \\
& or \\
& {{\sin }^{3}}A\ =\dfrac{1}{4}\left( 3\sin A-\sin 3A \right).............\left( 2 \right) \\
\end{align}$
So, with the help of this identity $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $we will solve this question by putting the value of ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $ in equation (2), we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 3\times 10{}^\circ \right) \\
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 30{}^\circ \right) \\
& or \\
& {{\sin }^{3}}50{}^\circ =\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 3\left( 50{}^\circ \right) \right) \\
& =\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 150{}^\circ \right) \\
& or \\
& {{\sin }^{3}}70{}^\circ =\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 3\times 70{}^\circ \right) \\
& =\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 210{}^\circ \right) \\
\end{align}$
Now, putting the value of ${{\sin }^{3}}10{}^\circ ,{{\sin }^{3}}50{}^\circ \ and\ {{\sin }^{3}}70{}^\circ $in equation (1), we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ \\
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 30{}^\circ \right)+\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 150{}^\circ \right)-\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 210{}^\circ \right) \\
\end{align}$
Now, by separating the like terms, we get,
\[\begin{align}
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ +3\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 150{}^\circ -\sin 210{}^\circ \right) \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 150{}^\circ -\sin 210{}^\circ \right) \\
\end{align}\]
As from basic trigonometric calculation we may write,$\sin 150{}^\circ \ as\ \sin \left( 180{}^\circ -30{}^\circ \right)\ and\ \sin 210{}^\circ \ as\ \sin \left( 180{}^\circ +30{}^\circ \right)$ \[=\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin \left( 180{}^\circ -30{}^\circ \right)-\sin \left( 180{}^\circ +30{}^\circ \right) \right).......\left( 3 \right)\]
Also,
$\begin{align}
& \sin \left( 180{}^\circ +\theta \right)=-\sin \left( \theta \right) \\
& and \\
& \sin \left( 180{}^\circ -\theta \right)=\sin \left( \theta \right) \\
\end{align}$
So, from this we can write $\ \sin \left( 180{}^\circ -30{}^\circ \right)\ as\ \sin 30{}^\circ and\ \sin \left( 180{}^\circ +30{}^\circ \right)\ as\ -\sin 30{}^\circ $.
As, we know $\sin \left( \theta \right)$ nature in different quadrant as:
So, putting the value of $\ \sin \left( 180{}^\circ -30{}^\circ \right)\ as\ \sin 30{}^\circ and\ \sin \left( 180{}^\circ +30{}^\circ \right)\ as\ -\sin 30{}^\circ $ in equation (3), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 30{}^\circ +\sin 30{}^\circ \right).......\left( 4 \right)\]
Also, we know that the value of \[\sin 30{}^\circ =\dfrac{1}{2}\]. So, putting the value of \[\sin 30{}^\circ \]in equation (4), we get,
\[\begin{align}
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\left( \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right) \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\times \dfrac{3}{2} \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{3}{8}............\left( 5 \right) \\
\end{align}\]
Also, we know the formula of $\sin C+\sin D\ as\ 2\cos \dfrac{\left( C+D \right)}{2}.\cos \dfrac{\left( C-D \right)}{2}$ .
So, applying $\sin C+\sin D\ $to $\sin 50{}^\circ -\ \sin 70{}^\circ $, we get,
$\begin{align}
& \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos \dfrac{\left( 50{}^\circ +70{}^\circ \right)}{2}.\sin \dfrac{\left( 50{}^\circ -70{}^\circ \right)}{2} \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos \dfrac{\left( 120{}^\circ \right)}{2}.\sin \dfrac{\left( -20{}^\circ \right)}{2} \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos 60{}^\circ .\sin \left( -10{}^\circ \right) \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =-2\cos 60{}^\circ .\sin 10{}^\circ \\
\end{align}$
Putting the value of $\sin 50{}^\circ -\ \sin 70{}^\circ $as $-2\cos 60{}^\circ .\sin 10{}^\circ $, in equation (5), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -2\cos 60{}^\circ .\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 6 \right)\]
We know that the value of $\cos 60{}^\circ $ is equal to $\dfrac{1}{2}$. So, putting the value of $\cos 60{}^\circ $ as $\dfrac{1}{2}$ in equation (6), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -2\times \left( \dfrac{1}{2} \right).\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 7 \right)\]
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -1.\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 8 \right)\]
Cancelling the similar terms in equation (8), we get,
$\begin{align}
& \Rightarrow \dfrac{3}{4}\left( 0 \right)-\dfrac{3}{8} \\
& \Rightarrow 0-\dfrac{3}{8} \\
& \Rightarrow -\dfrac{3}{8} \\
\end{align}$
Thus, the value of ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $ is $-\dfrac{3}{8}$ and option (D) is the correct answer.
Note: An alternate method to solve this question is by putting the values of $\sin \theta $ directly in question and by performing some basic mathematical operation. This method is only possible if you are provided with trigonometric tables or are permitted to use a calculator. You can solve this question in just a few lines.
$\begin{align}
& value\ of\ \sin 10{}^\circ =0.17 \\
& value\ of\ \sin 50{}^\circ =0.76 \\
& value\ of\ \sin 70{}^\circ =0.93 \\
\end{align}$
Also,
$\begin{align}
& value\ of\ {{\sin }^{3}}10{}^\circ =0.004 \\
& value\ of\ {{\sin }^{3}}50{}^\circ =0.438 \\
& value\ of\ {{\sin }^{3}}70{}^\circ =0.80 \\
\end{align}$
Putting value of ${{\sin }^{3}}10{}^\circ ,{{\sin }^{3}}50{}^\circ \ and\ {{\sin }^{3}}70{}^\circ $in the given equation ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $, we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ \\
& =0.004+0.438-0.80 \\
& =0.442-0.80 \\
& =-0.358 \\
\end{align}$
We get the value as -0.358 because we have considered two decimal places only.
Complete step-by-step answer:
It is given that to find the value of
${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ ...............\left( 1 \right)$
We know that $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $is an identity used in trigonometric calculation.
$\begin{align}
& 4{{\sin }^{3}}A\ =3\sin A-\sin 3A \\
& or \\
& {{\sin }^{3}}A\ =\dfrac{1}{4}\left( 3\sin A-\sin 3A \right).............\left( 2 \right) \\
\end{align}$
So, with the help of this identity $\sin 3A=3\sin A-4{{\sin }^{3}}A\ $we will solve this question by putting the value of ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $ in equation (2), we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 3\times 10{}^\circ \right) \\
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 30{}^\circ \right) \\
& or \\
& {{\sin }^{3}}50{}^\circ =\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 3\left( 50{}^\circ \right) \right) \\
& =\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 150{}^\circ \right) \\
& or \\
& {{\sin }^{3}}70{}^\circ =\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 3\times 70{}^\circ \right) \\
& =\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 210{}^\circ \right) \\
\end{align}$
Now, putting the value of ${{\sin }^{3}}10{}^\circ ,{{\sin }^{3}}50{}^\circ \ and\ {{\sin }^{3}}70{}^\circ $in equation (1), we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ \\
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ -\sin 30{}^\circ \right)+\dfrac{1}{4}\left( 3\sin 50{}^\circ -\sin 150{}^\circ \right)-\dfrac{1}{4}\left( 3\sin 70{}^\circ -\sin 210{}^\circ \right) \\
\end{align}$
Now, by separating the like terms, we get,
\[\begin{align}
& =\dfrac{1}{4}\left( 3\sin 10{}^\circ +3\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 150{}^\circ -\sin 210{}^\circ \right) \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 150{}^\circ -\sin 210{}^\circ \right) \\
\end{align}\]
As from basic trigonometric calculation we may write,$\sin 150{}^\circ \ as\ \sin \left( 180{}^\circ -30{}^\circ \right)\ and\ \sin 210{}^\circ \ as\ \sin \left( 180{}^\circ +30{}^\circ \right)$ \[=\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)+\dfrac{1}{4}\left( \sin 30{}^\circ +\sin \left( 180{}^\circ -30{}^\circ \right)-\sin \left( 180{}^\circ +30{}^\circ \right) \right).......\left( 3 \right)\]
Also,
$\begin{align}
& \sin \left( 180{}^\circ +\theta \right)=-\sin \left( \theta \right) \\
& and \\
& \sin \left( 180{}^\circ -\theta \right)=\sin \left( \theta \right) \\
\end{align}$
So, from this we can write $\ \sin \left( 180{}^\circ -30{}^\circ \right)\ as\ \sin 30{}^\circ and\ \sin \left( 180{}^\circ +30{}^\circ \right)\ as\ -\sin 30{}^\circ $.
As, we know $\sin \left( \theta \right)$ nature in different quadrant as:
So, putting the value of $\ \sin \left( 180{}^\circ -30{}^\circ \right)\ as\ \sin 30{}^\circ and\ \sin \left( 180{}^\circ +30{}^\circ \right)\ as\ -\sin 30{}^\circ $ in equation (3), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\left( \sin 30{}^\circ +\sin 30{}^\circ +\sin 30{}^\circ \right).......\left( 4 \right)\]
Also, we know that the value of \[\sin 30{}^\circ =\dfrac{1}{2}\]. So, putting the value of \[\sin 30{}^\circ \]in equation (4), we get,
\[\begin{align}
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\left( \dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right) \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{1}{4}\times \dfrac{3}{2} \\
& =\dfrac{3}{4}\left( \sin 10{}^\circ +\sin 50{}^\circ -\sin 70{}^\circ \right)-\dfrac{3}{8}............\left( 5 \right) \\
\end{align}\]
Also, we know the formula of $\sin C+\sin D\ as\ 2\cos \dfrac{\left( C+D \right)}{2}.\cos \dfrac{\left( C-D \right)}{2}$ .
So, applying $\sin C+\sin D\ $to $\sin 50{}^\circ -\ \sin 70{}^\circ $, we get,
$\begin{align}
& \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos \dfrac{\left( 50{}^\circ +70{}^\circ \right)}{2}.\sin \dfrac{\left( 50{}^\circ -70{}^\circ \right)}{2} \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos \dfrac{\left( 120{}^\circ \right)}{2}.\sin \dfrac{\left( -20{}^\circ \right)}{2} \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =2\cos 60{}^\circ .\sin \left( -10{}^\circ \right) \\
& \Rightarrow \sin 50{}^\circ -\ \sin 70{}^\circ =-2\cos 60{}^\circ .\sin 10{}^\circ \\
\end{align}$
Putting the value of $\sin 50{}^\circ -\ \sin 70{}^\circ $as $-2\cos 60{}^\circ .\sin 10{}^\circ $, in equation (5), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -2\cos 60{}^\circ .\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 6 \right)\]
We know that the value of $\cos 60{}^\circ $ is equal to $\dfrac{1}{2}$. So, putting the value of $\cos 60{}^\circ $ as $\dfrac{1}{2}$ in equation (6), we get,
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -2\times \left( \dfrac{1}{2} \right).\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 7 \right)\]
\[=\dfrac{3}{4}\left( \sin 10{}^\circ -1.\sin 10{}^\circ \right)-\dfrac{3}{8}..........\left( 8 \right)\]
Cancelling the similar terms in equation (8), we get,
$\begin{align}
& \Rightarrow \dfrac{3}{4}\left( 0 \right)-\dfrac{3}{8} \\
& \Rightarrow 0-\dfrac{3}{8} \\
& \Rightarrow -\dfrac{3}{8} \\
\end{align}$
Thus, the value of ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $ is $-\dfrac{3}{8}$ and option (D) is the correct answer.
Note: An alternate method to solve this question is by putting the values of $\sin \theta $ directly in question and by performing some basic mathematical operation. This method is only possible if you are provided with trigonometric tables or are permitted to use a calculator. You can solve this question in just a few lines.
$\begin{align}
& value\ of\ \sin 10{}^\circ =0.17 \\
& value\ of\ \sin 50{}^\circ =0.76 \\
& value\ of\ \sin 70{}^\circ =0.93 \\
\end{align}$
Also,
$\begin{align}
& value\ of\ {{\sin }^{3}}10{}^\circ =0.004 \\
& value\ of\ {{\sin }^{3}}50{}^\circ =0.438 \\
& value\ of\ {{\sin }^{3}}70{}^\circ =0.80 \\
\end{align}$
Putting value of ${{\sin }^{3}}10{}^\circ ,{{\sin }^{3}}50{}^\circ \ and\ {{\sin }^{3}}70{}^\circ $in the given equation ${{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ $, we get,
$\begin{align}
& {{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^\circ -{{\sin }^{3}}70{}^\circ \\
& =0.004+0.438-0.80 \\
& =0.442-0.80 \\
& =-0.358 \\
\end{align}$
We get the value as -0.358 because we have considered two decimal places only.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

