
The value of the following complex number ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ is equal to:
(a) -8
(b) 8i
(c) 8
(d) 32
Answer
587.7k+ views
Hint: We are asked to find the value of this complex number ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ which we are going to find by expanding each complex number using binomial expansion which is equal to ${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{n}}{{x}^{n}}$. After that we will use the different powers on iota as follows:
$\begin{align}
& {{i}^{4n}}=1 \\
& {{i}^{4n+1}}=i \\
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}$
Complete step by step answer:
We have given the following complex number:
${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$
We have to evaluate the above expression which we are going to do by expanding each complex numbers using the following binomial expansion:
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{n}}{{x}^{n}}$
Let us expand ${{\left( 1+i \right)}^{5}}$ using binomial expansion we get,
${{\left( 1+i \right)}^{5}}={}^{5}{{C}_{0}}+{}^{5}{{C}_{1}}i+{}^{5}{{C}_{2}}{{i}^{2}}+{}^{5}{{C}_{3}}{{i}^{3}}+{}^{5}{{C}_{4}}{{i}^{4}}+{}^{5}{{C}_{5}}{{i}^{5}}$
Now, to evaluate the above we are going to use the following combinatorial formula and the different powers of iota.
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
The value of different powers of iota as follows:
$\begin{align}
& {{i}^{4n}}=1 \\
& {{i}^{4n+1}}=i \\
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}$
Using the above different powers of iota we are going to find the values of iota given in the binomial expansion:
$\begin{align}
& {{i}^{^{2}}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
& {{i}^{5}}=i \\
\end{align}$
$\begin{align}
& {{\left( 1+i \right)}^{5}}=\dfrac{5!}{0!5!}+\dfrac{5!}{1!4!}i+\dfrac{5!}{2!3!}\left( -1 \right)+\dfrac{5!}{3!2!}\left( -i \right)+\dfrac{5!}{4!1!}\left( 1 \right)+\dfrac{5!}{5!0!}i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=1+\dfrac{5.4!}{4!}i-\dfrac{5.4.3!}{2.1.3!}-i\dfrac{5.4.3!}{3!2.1}+\dfrac{5.4!}{4!1!}+i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=1+5i-10-10i+5+i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=-4-4i \\
\end{align}$
Similarly, we can find the value of ${{\left( 1-i \right)}^{5}}$.
\[{{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}+{}^{5}{{C}_{1}}\left( -i \right)+{}^{5}{{C}_{2}}{{\left( -i \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( -i \right)}^{3}}+{}^{5}{{C}_{4}}{{\left( -i \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -i \right)}^{5}}\]
\[\begin{align}
& {{\left( 1-i \right)}^{5}}=\dfrac{5!}{0!5!}+\dfrac{5!}{1!4!}\left( -i \right)+\dfrac{5!}{2!3!}\left( \left( -1 \right) \right)+\dfrac{5!}{3!2!}\left( -\left( -i \right) \right)+\dfrac{5!}{4!1!}\left( 1 \right)+\dfrac{5!}{5!0!}\left( -i \right) \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=1-\dfrac{5.4!}{4!}i-\dfrac{5.4.3!}{2.1.3!}+i\dfrac{5.4.3!}{3!2.1}+\dfrac{5.4!}{4!1!}-i \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=1-5i-10+10i+5-i \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=-4+4i \\
\end{align}\]
Now, adding these two complex numbers we get,
$\begin{align}
& {{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}} \\
& =-4-4i-4+4i \\
& =-8 \\
\end{align}$
Hence, we got the evaluation of the given complex number as -8.
So, the correct answer is “Option A”.
Note: The other way to solve the above problem is to convert the complex numbers written in the brackets into Euler form.
The expression given above is equal to:
${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$
We can write 1 + i in the form of Euler form as follows:
The complex number written in the brackets is in the form of:
$\cos \theta +i\sin \theta $
And Euler form of the above complex number is equal to:
$r{{e}^{i\theta }}$
Writing 1 + i in the Euler form as follows:
Multiplying and dividing $\sqrt{2}$ to 1 + i we get,
$\begin{align}
& \dfrac{\sqrt{2}}{\sqrt{2}}\left( 1+i \right) \\
& =\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right) \\
\end{align}$
Rewriting the above expression as follows:
$\sqrt{2}\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)$
Writing in the Euler form we get,
$\sqrt{2}{{e}^{i\dfrac{\pi }{4}}}$
Similarly we can write the Euler form for 1 – i as follows:
$\begin{align}
& \dfrac{\sqrt{2}}{\sqrt{2}}\left( 1-i \right) \\
& =\sqrt{2}\left( \dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}} \right) \\
\end{align}$
The above complex number occurs in the fourth quadrant so the angle in the Euler form changes from $\dfrac{\pi }{4}$ to $-\dfrac{\pi }{4}$.
$\sqrt{2}{{e}^{-i\dfrac{\pi }{4}}}$
Now, substituting these complex numbers of the Euler form in the given expression we get,
$\begin{align}
& {{\left( \sqrt{2}{{e}^{i\dfrac{\pi }{4}}} \right)}^{5}}+{{\left( \sqrt{2}{{e}^{-i\dfrac{\pi }{4}}} \right)}^{5}} \\
& ={{\left( \sqrt{2} \right)}^{5}}{{e}^{\dfrac{i5\pi }{4}}}+{{\left( \sqrt{2} \right)}^{5}}{{e}^{-\dfrac{i5\pi }{4}}} \\
\end{align}$
Converting the above Euler form into cosine and sine angle forms we get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right)+i\sin \left( -\dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right)-i\sin \left( \dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right) \right) \\
\end{align}$
We know that $\cos \left( -\theta \right)=\cos \theta $ so using this relation in the above expression we get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+\cos \left( \dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( -\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right) \\
\end{align}$
$\begin{align}
& ={{\left( \sqrt{2} \right)}^{5}}\left( -\dfrac{2}{\sqrt{2}} \right) \\
& =-{{\left( \sqrt{2} \right)}^{4}}\left( 2 \right) \\
& =-8 \\
\end{align}$
Hence, we are getting the same value as in the above solution.
$\begin{align}
& {{i}^{4n}}=1 \\
& {{i}^{4n+1}}=i \\
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}$
Complete step by step answer:
We have given the following complex number:
${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$
We have to evaluate the above expression which we are going to do by expanding each complex numbers using the following binomial expansion:
${{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{n}}{{x}^{n}}$
Let us expand ${{\left( 1+i \right)}^{5}}$ using binomial expansion we get,
${{\left( 1+i \right)}^{5}}={}^{5}{{C}_{0}}+{}^{5}{{C}_{1}}i+{}^{5}{{C}_{2}}{{i}^{2}}+{}^{5}{{C}_{3}}{{i}^{3}}+{}^{5}{{C}_{4}}{{i}^{4}}+{}^{5}{{C}_{5}}{{i}^{5}}$
Now, to evaluate the above we are going to use the following combinatorial formula and the different powers of iota.
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
The value of different powers of iota as follows:
$\begin{align}
& {{i}^{4n}}=1 \\
& {{i}^{4n+1}}=i \\
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}$
Using the above different powers of iota we are going to find the values of iota given in the binomial expansion:
$\begin{align}
& {{i}^{^{2}}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
& {{i}^{5}}=i \\
\end{align}$
$\begin{align}
& {{\left( 1+i \right)}^{5}}=\dfrac{5!}{0!5!}+\dfrac{5!}{1!4!}i+\dfrac{5!}{2!3!}\left( -1 \right)+\dfrac{5!}{3!2!}\left( -i \right)+\dfrac{5!}{4!1!}\left( 1 \right)+\dfrac{5!}{5!0!}i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=1+\dfrac{5.4!}{4!}i-\dfrac{5.4.3!}{2.1.3!}-i\dfrac{5.4.3!}{3!2.1}+\dfrac{5.4!}{4!1!}+i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=1+5i-10-10i+5+i \\
& \Rightarrow {{\left( 1+i \right)}^{5}}=-4-4i \\
\end{align}$
Similarly, we can find the value of ${{\left( 1-i \right)}^{5}}$.
\[{{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}+{}^{5}{{C}_{1}}\left( -i \right)+{}^{5}{{C}_{2}}{{\left( -i \right)}^{2}}+{}^{5}{{C}_{3}}{{\left( -i \right)}^{3}}+{}^{5}{{C}_{4}}{{\left( -i \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -i \right)}^{5}}\]
\[\begin{align}
& {{\left( 1-i \right)}^{5}}=\dfrac{5!}{0!5!}+\dfrac{5!}{1!4!}\left( -i \right)+\dfrac{5!}{2!3!}\left( \left( -1 \right) \right)+\dfrac{5!}{3!2!}\left( -\left( -i \right) \right)+\dfrac{5!}{4!1!}\left( 1 \right)+\dfrac{5!}{5!0!}\left( -i \right) \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=1-\dfrac{5.4!}{4!}i-\dfrac{5.4.3!}{2.1.3!}+i\dfrac{5.4.3!}{3!2.1}+\dfrac{5.4!}{4!1!}-i \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=1-5i-10+10i+5-i \\
& \Rightarrow {{\left( 1-i \right)}^{5}}=-4+4i \\
\end{align}\]
Now, adding these two complex numbers we get,
$\begin{align}
& {{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}} \\
& =-4-4i-4+4i \\
& =-8 \\
\end{align}$
Hence, we got the evaluation of the given complex number as -8.
So, the correct answer is “Option A”.
Note: The other way to solve the above problem is to convert the complex numbers written in the brackets into Euler form.
The expression given above is equal to:
${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$
We can write 1 + i in the form of Euler form as follows:
The complex number written in the brackets is in the form of:
$\cos \theta +i\sin \theta $
And Euler form of the above complex number is equal to:
$r{{e}^{i\theta }}$
Writing 1 + i in the Euler form as follows:
Multiplying and dividing $\sqrt{2}$ to 1 + i we get,
$\begin{align}
& \dfrac{\sqrt{2}}{\sqrt{2}}\left( 1+i \right) \\
& =\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right) \\
\end{align}$
Rewriting the above expression as follows:
$\sqrt{2}\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)$
Writing in the Euler form we get,
$\sqrt{2}{{e}^{i\dfrac{\pi }{4}}}$
Similarly we can write the Euler form for 1 – i as follows:
$\begin{align}
& \dfrac{\sqrt{2}}{\sqrt{2}}\left( 1-i \right) \\
& =\sqrt{2}\left( \dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}} \right) \\
\end{align}$
The above complex number occurs in the fourth quadrant so the angle in the Euler form changes from $\dfrac{\pi }{4}$ to $-\dfrac{\pi }{4}$.
$\sqrt{2}{{e}^{-i\dfrac{\pi }{4}}}$
Now, substituting these complex numbers of the Euler form in the given expression we get,
$\begin{align}
& {{\left( \sqrt{2}{{e}^{i\dfrac{\pi }{4}}} \right)}^{5}}+{{\left( \sqrt{2}{{e}^{-i\dfrac{\pi }{4}}} \right)}^{5}} \\
& ={{\left( \sqrt{2} \right)}^{5}}{{e}^{\dfrac{i5\pi }{4}}}+{{\left( \sqrt{2} \right)}^{5}}{{e}^{-\dfrac{i5\pi }{4}}} \\
\end{align}$
Converting the above Euler form into cosine and sine angle forms we get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right)+i\sin \left( -\dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right)-i\sin \left( \dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+\cos \left( -\dfrac{5\pi }{4} \right) \right) \\
\end{align}$
We know that $\cos \left( -\theta \right)=\cos \theta $ so using this relation in the above expression we get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{5}}\left( \cos \dfrac{5\pi }{4}+\cos \left( \dfrac{5\pi }{4} \right) \right) \\
& ={{\left( \sqrt{2} \right)}^{5}}\left( -\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right) \\
\end{align}$
$\begin{align}
& ={{\left( \sqrt{2} \right)}^{5}}\left( -\dfrac{2}{\sqrt{2}} \right) \\
& =-{{\left( \sqrt{2} \right)}^{4}}\left( 2 \right) \\
& =-8 \\
\end{align}$
Hence, we are getting the same value as in the above solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

