
The value of the expression $\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ is
1) $\cot \left( {{2}^{n}}\alpha \right)$
2) ${{2}^{n}}\tan \left( {{2}^{n}}\alpha \right)$
3) $0$
4) $\cot \alpha $
Answer
444.3k+ views
Hint: For finding the value of the given question $\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ , we will use a different method. In which we will try to find the value of $\tan \alpha $ , $2\tan 2\alpha $, ….${{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)$ with the use of $\cot \alpha -\tan \alpha $ . Similarly, we will get the value of $2\tan 2\alpha $, ….${{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)$ and so on. After adding them and then simplifying, we will get the value of the given equation.
Complete step-by-step solution:
Since, the given question, we have:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Here, we need to have to find the value of this question. So, we will try to find the value of $\tan \alpha $ with the help of getting sum of $\tan \alpha +\cot \alpha $ as:
$\Rightarrow \cot \alpha -\tan \alpha $
As we know that $\tan \alpha $ is equal to $\dfrac{1}{\cot \alpha }$ . So, we can write the above step below as:
$\Rightarrow \cot \alpha -\dfrac{1}{\cot \alpha }$
Now, we take L.C.M. from denominator to solve the above step as:
$\Rightarrow \dfrac{{{\cot }^{2}}\alpha -1}{\cot \alpha }$
By using the formula of $\cot 2\alpha $ , we can write the above step below as:
$\Rightarrow 2\cot 2\alpha $
Now, we can write the whole equation as:
$\Rightarrow \cot \alpha -\tan \alpha =2\cot 2\alpha $
From the above equation, we will get the value of $\tan \alpha $ as:
$\Rightarrow \tan \alpha =\cot \alpha -2\cot 2\alpha $ … $\left( 1 \right)$
Now, similarly we can calculate the value of $\tan 2\alpha $ and will have the equation as:
$\Rightarrow \tan 2\alpha =\cot 2\alpha -2\cot 4\alpha $
Here, we will multiply by $2$ both sides of the above equation and will get:
$\Rightarrow 2\tan 2\alpha =2\cot 2\alpha -4\cot 4\alpha $ … $\left( 2 \right)$
Similarly, if we replace $\alpha $ from $4\alpha $ and multiply by $4$ in equation $\left( 1 \right)$ will have:
$\Rightarrow 4\tan 4\alpha =4\cot 4\alpha -8\cot 8\alpha $ … $\left( 3 \right)$
And we will continue this process up to $\left( n-1 \right)\alpha $ and will multiply by $\left( n-1 \right)$ in equation $\left( 1 \right)$ and will get the equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{\left( n-1+1 \right)}}\cot \left( {{2}^{\left( n-1+1 \right)}}\alpha \right)$
After simplifying the power, we will have the above equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ … $\left( n-1 \right)$
Now, we will add both sides of all the equations from $\left( 1 \right)$ to $\left( n-1 \right)$ and will get the above equation as:
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) \\
& =\cot \alpha -2\cot 2\alpha +2\cot 2\alpha -4\cot 4\alpha +4\cot 4\alpha -8\cot 8\alpha +{{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \\
\end{align}\]
After simplifying the above equation in which we will cancel out some terms, we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)=\cot \alpha -{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\]
Here, we will change the place of term \[{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\] from right side to left side and the equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)=\cot \alpha \]
Hence, this is the solution.
Note: Here, we will solve the given equation in the other way as:
Since, the question is:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Now, we will simplify the last two terms as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \right]\]
Since, we know that we can write $\tan \alpha $ and $\cot \alpha $ in the form of $\sin \alpha $ and $\cos \alpha $ as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\dfrac{\sin \left( {{2}^{n-1}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)}+{{2}^{n}}\dfrac{\cos \left( {{2}^{n}}\alpha \right)}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Further we will simplify as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+2\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+... \\
& +{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right] \\
\end{align}\]
In the above step, we got the expansion of the formula $\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha $. So, we will use it as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we take ${{2}^{n-1}}$ common as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\left( 2-1 \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
After solving it, we will have:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we will take common \[\cos {{2}^{n-1}}\alpha \] in the numerator and will write the above step as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n-1}}\alpha \right)\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
From the numerator and denominator, \[\cos {{2}^{n-1}}\alpha \] will be canceling out as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
We can write \[\cos \left( {{2}^{n}}\alpha \right)\] as \[2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1\] and \[\sin \left( {{2}^{n}}\alpha \right)\] as $2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha $ . Thus, above equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1 \right]}{2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha } \right]\]
After solving it we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\cot \left( {{2}^{n-1}} \right)\alpha \]
Similarly, we will combine all the term up to \[2\tan \left( 2\alpha \right)\] and will get in last the equation as:
\[\Rightarrow \tan \alpha +2\cot 2\alpha \]
And similarly, we will solve it as we did for last two terms and will have the value as:
\[\Rightarrow \cot \alpha \]
Hence, the solution is correct.
Complete step-by-step solution:
Since, the given question, we have:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Here, we need to have to find the value of this question. So, we will try to find the value of $\tan \alpha $ with the help of getting sum of $\tan \alpha +\cot \alpha $ as:
$\Rightarrow \cot \alpha -\tan \alpha $
As we know that $\tan \alpha $ is equal to $\dfrac{1}{\cot \alpha }$ . So, we can write the above step below as:
$\Rightarrow \cot \alpha -\dfrac{1}{\cot \alpha }$
Now, we take L.C.M. from denominator to solve the above step as:
$\Rightarrow \dfrac{{{\cot }^{2}}\alpha -1}{\cot \alpha }$
By using the formula of $\cot 2\alpha $ , we can write the above step below as:
$\Rightarrow 2\cot 2\alpha $
Now, we can write the whole equation as:
$\Rightarrow \cot \alpha -\tan \alpha =2\cot 2\alpha $
From the above equation, we will get the value of $\tan \alpha $ as:
$\Rightarrow \tan \alpha =\cot \alpha -2\cot 2\alpha $ … $\left( 1 \right)$
Now, similarly we can calculate the value of $\tan 2\alpha $ and will have the equation as:
$\Rightarrow \tan 2\alpha =\cot 2\alpha -2\cot 4\alpha $
Here, we will multiply by $2$ both sides of the above equation and will get:
$\Rightarrow 2\tan 2\alpha =2\cot 2\alpha -4\cot 4\alpha $ … $\left( 2 \right)$
Similarly, if we replace $\alpha $ from $4\alpha $ and multiply by $4$ in equation $\left( 1 \right)$ will have:
$\Rightarrow 4\tan 4\alpha =4\cot 4\alpha -8\cot 8\alpha $ … $\left( 3 \right)$
And we will continue this process up to $\left( n-1 \right)\alpha $ and will multiply by $\left( n-1 \right)$ in equation $\left( 1 \right)$ and will get the equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{\left( n-1+1 \right)}}\cot \left( {{2}^{\left( n-1+1 \right)}}\alpha \right)$
After simplifying the power, we will have the above equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ … $\left( n-1 \right)$
Now, we will add both sides of all the equations from $\left( 1 \right)$ to $\left( n-1 \right)$ and will get the above equation as:
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) \\
& =\cot \alpha -2\cot 2\alpha +2\cot 2\alpha -4\cot 4\alpha +4\cot 4\alpha -8\cot 8\alpha +{{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \\
\end{align}\]
After simplifying the above equation in which we will cancel out some terms, we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)=\cot \alpha -{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\]
Here, we will change the place of term \[{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\] from right side to left side and the equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)=\cot \alpha \]
Hence, this is the solution.
Note: Here, we will solve the given equation in the other way as:
Since, the question is:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Now, we will simplify the last two terms as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \right]\]
Since, we know that we can write $\tan \alpha $ and $\cot \alpha $ in the form of $\sin \alpha $ and $\cos \alpha $ as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\dfrac{\sin \left( {{2}^{n-1}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)}+{{2}^{n}}\dfrac{\cos \left( {{2}^{n}}\alpha \right)}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Further we will simplify as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+2\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+... \\
& +{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right] \\
\end{align}\]
In the above step, we got the expansion of the formula $\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha $. So, we will use it as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we take ${{2}^{n-1}}$ common as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\left( 2-1 \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
After solving it, we will have:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we will take common \[\cos {{2}^{n-1}}\alpha \] in the numerator and will write the above step as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n-1}}\alpha \right)\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
From the numerator and denominator, \[\cos {{2}^{n-1}}\alpha \] will be canceling out as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
We can write \[\cos \left( {{2}^{n}}\alpha \right)\] as \[2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1\] and \[\sin \left( {{2}^{n}}\alpha \right)\] as $2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha $ . Thus, above equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1 \right]}{2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha } \right]\]
After solving it we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\cot \left( {{2}^{n-1}} \right)\alpha \]
Similarly, we will combine all the term up to \[2\tan \left( 2\alpha \right)\] and will get in last the equation as:
\[\Rightarrow \tan \alpha +2\cot 2\alpha \]
And similarly, we will solve it as we did for last two terms and will have the value as:
\[\Rightarrow \cot \alpha \]
Hence, the solution is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
