
The value of the expression $\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ is
1) $\cot \left( {{2}^{n}}\alpha \right)$
2) ${{2}^{n}}\tan \left( {{2}^{n}}\alpha \right)$
3) $0$
4) $\cot \alpha $
Answer
525.9k+ views
Hint: For finding the value of the given question $\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ , we will use a different method. In which we will try to find the value of $\tan \alpha $ , $2\tan 2\alpha $, ….${{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)$ with the use of $\cot \alpha -\tan \alpha $ . Similarly, we will get the value of $2\tan 2\alpha $, ….${{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)$ and so on. After adding them and then simplifying, we will get the value of the given equation.
Complete step-by-step solution:
Since, the given question, we have:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Here, we need to have to find the value of this question. So, we will try to find the value of $\tan \alpha $ with the help of getting sum of $\tan \alpha +\cot \alpha $ as:
$\Rightarrow \cot \alpha -\tan \alpha $
As we know that $\tan \alpha $ is equal to $\dfrac{1}{\cot \alpha }$ . So, we can write the above step below as:
$\Rightarrow \cot \alpha -\dfrac{1}{\cot \alpha }$
Now, we take L.C.M. from denominator to solve the above step as:
$\Rightarrow \dfrac{{{\cot }^{2}}\alpha -1}{\cot \alpha }$
By using the formula of $\cot 2\alpha $ , we can write the above step below as:
$\Rightarrow 2\cot 2\alpha $
Now, we can write the whole equation as:
$\Rightarrow \cot \alpha -\tan \alpha =2\cot 2\alpha $
From the above equation, we will get the value of $\tan \alpha $ as:
$\Rightarrow \tan \alpha =\cot \alpha -2\cot 2\alpha $ … $\left( 1 \right)$
Now, similarly we can calculate the value of $\tan 2\alpha $ and will have the equation as:
$\Rightarrow \tan 2\alpha =\cot 2\alpha -2\cot 4\alpha $
Here, we will multiply by $2$ both sides of the above equation and will get:
$\Rightarrow 2\tan 2\alpha =2\cot 2\alpha -4\cot 4\alpha $ … $\left( 2 \right)$
Similarly, if we replace $\alpha $ from $4\alpha $ and multiply by $4$ in equation $\left( 1 \right)$ will have:
$\Rightarrow 4\tan 4\alpha =4\cot 4\alpha -8\cot 8\alpha $ … $\left( 3 \right)$
And we will continue this process up to $\left( n-1 \right)\alpha $ and will multiply by $\left( n-1 \right)$ in equation $\left( 1 \right)$ and will get the equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{\left( n-1+1 \right)}}\cot \left( {{2}^{\left( n-1+1 \right)}}\alpha \right)$
After simplifying the power, we will have the above equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ … $\left( n-1 \right)$
Now, we will add both sides of all the equations from $\left( 1 \right)$ to $\left( n-1 \right)$ and will get the above equation as:
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) \\
& =\cot \alpha -2\cot 2\alpha +2\cot 2\alpha -4\cot 4\alpha +4\cot 4\alpha -8\cot 8\alpha +{{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \\
\end{align}\]
After simplifying the above equation in which we will cancel out some terms, we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)=\cot \alpha -{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\]
Here, we will change the place of term \[{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\] from right side to left side and the equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)=\cot \alpha \]
Hence, this is the solution.
Note: Here, we will solve the given equation in the other way as:
Since, the question is:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Now, we will simplify the last two terms as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \right]\]
Since, we know that we can write $\tan \alpha $ and $\cot \alpha $ in the form of $\sin \alpha $ and $\cos \alpha $ as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\dfrac{\sin \left( {{2}^{n-1}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)}+{{2}^{n}}\dfrac{\cos \left( {{2}^{n}}\alpha \right)}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Further we will simplify as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+2\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+... \\
& +{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right] \\
\end{align}\]
In the above step, we got the expansion of the formula $\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha $. So, we will use it as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we take ${{2}^{n-1}}$ common as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\left( 2-1 \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
After solving it, we will have:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we will take common \[\cos {{2}^{n-1}}\alpha \] in the numerator and will write the above step as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n-1}}\alpha \right)\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
From the numerator and denominator, \[\cos {{2}^{n-1}}\alpha \] will be canceling out as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
We can write \[\cos \left( {{2}^{n}}\alpha \right)\] as \[2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1\] and \[\sin \left( {{2}^{n}}\alpha \right)\] as $2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha $ . Thus, above equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1 \right]}{2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha } \right]\]
After solving it we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\cot \left( {{2}^{n-1}} \right)\alpha \]
Similarly, we will combine all the term up to \[2\tan \left( 2\alpha \right)\] and will get in last the equation as:
\[\Rightarrow \tan \alpha +2\cot 2\alpha \]
And similarly, we will solve it as we did for last two terms and will have the value as:
\[\Rightarrow \cot \alpha \]
Hence, the solution is correct.
Complete step-by-step solution:
Since, the given question, we have:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Here, we need to have to find the value of this question. So, we will try to find the value of $\tan \alpha $ with the help of getting sum of $\tan \alpha +\cot \alpha $ as:
$\Rightarrow \cot \alpha -\tan \alpha $
As we know that $\tan \alpha $ is equal to $\dfrac{1}{\cot \alpha }$ . So, we can write the above step below as:
$\Rightarrow \cot \alpha -\dfrac{1}{\cot \alpha }$
Now, we take L.C.M. from denominator to solve the above step as:
$\Rightarrow \dfrac{{{\cot }^{2}}\alpha -1}{\cot \alpha }$
By using the formula of $\cot 2\alpha $ , we can write the above step below as:
$\Rightarrow 2\cot 2\alpha $
Now, we can write the whole equation as:
$\Rightarrow \cot \alpha -\tan \alpha =2\cot 2\alpha $
From the above equation, we will get the value of $\tan \alpha $ as:
$\Rightarrow \tan \alpha =\cot \alpha -2\cot 2\alpha $ … $\left( 1 \right)$
Now, similarly we can calculate the value of $\tan 2\alpha $ and will have the equation as:
$\Rightarrow \tan 2\alpha =\cot 2\alpha -2\cot 4\alpha $
Here, we will multiply by $2$ both sides of the above equation and will get:
$\Rightarrow 2\tan 2\alpha =2\cot 2\alpha -4\cot 4\alpha $ … $\left( 2 \right)$
Similarly, if we replace $\alpha $ from $4\alpha $ and multiply by $4$ in equation $\left( 1 \right)$ will have:
$\Rightarrow 4\tan 4\alpha =4\cot 4\alpha -8\cot 8\alpha $ … $\left( 3 \right)$
And we will continue this process up to $\left( n-1 \right)\alpha $ and will multiply by $\left( n-1 \right)$ in equation $\left( 1 \right)$ and will get the equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{\left( n-1+1 \right)}}\cot \left( {{2}^{\left( n-1+1 \right)}}\alpha \right)$
After simplifying the power, we will have the above equation as:
$\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ … $\left( n-1 \right)$
Now, we will add both sides of all the equations from $\left( 1 \right)$ to $\left( n-1 \right)$ and will get the above equation as:
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) \\
& =\cot \alpha -2\cot 2\alpha +2\cot 2\alpha -4\cot 4\alpha +4\cot 4\alpha -8\cot 8\alpha +{{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \\
\end{align}\]
After simplifying the above equation in which we will cancel out some terms, we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)=\cot \alpha -{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\]
Here, we will change the place of term \[{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)\] from right side to left side and the equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)=\cot \alpha \]
Hence, this is the solution.
Note: Here, we will solve the given equation in the other way as:
Since, the question is:
$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$
Now, we will simplify the last two terms as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \right]\]
Since, we know that we can write $\tan \alpha $ and $\cot \alpha $ in the form of $\sin \alpha $ and $\cos \alpha $ as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\dfrac{\sin \left( {{2}^{n-1}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)}+{{2}^{n}}\dfrac{\cos \left( {{2}^{n}}\alpha \right)}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Further we will simplify as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+2\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
\[\begin{align}
& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+... \\
& +{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right] \\
\end{align}\]
In the above step, we got the expansion of the formula $\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha $. So, we will use it as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we take ${{2}^{n-1}}$ common as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\left( 2-1 \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
After solving it, we will have:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
Now, we will take common \[\cos {{2}^{n-1}}\alpha \] in the numerator and will write the above step as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n-1}}\alpha \right)\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]\]
From the numerator and denominator, \[\cos {{2}^{n-1}}\alpha \] will be canceling out as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\sin \left( {{2}^{n}}\alpha \right)} \right]\]
We can write \[\cos \left( {{2}^{n}}\alpha \right)\] as \[2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1\] and \[\sin \left( {{2}^{n}}\alpha \right)\] as $2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha $ . Thus, above equation will be as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1 \right]}{2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha } \right]\]
After solving it we will have the above equation as:
\[\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\cot \left( {{2}^{n-1}} \right)\alpha \]
Similarly, we will combine all the term up to \[2\tan \left( 2\alpha \right)\] and will get in last the equation as:
\[\Rightarrow \tan \alpha +2\cot 2\alpha \]
And similarly, we will solve it as we did for last two terms and will have the value as:
\[\Rightarrow \cot \alpha \]
Hence, the solution is correct.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

