
The value of the expression ${{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\dfrac{5\pi }{12}$ is
(a) $\dfrac{2}{3}$
(b) $\dfrac{2}{3+\sqrt{3}}$
(c) $\dfrac{3}{2}$
(d) $\dfrac{3+\sqrt{3}}{2}$
Answer
520.2k+ views
Hint: In the trigonometric expression given to us, we know the value of $\cos \dfrac{\pi }{4}$ which is equal to $\dfrac{1}{\sqrt{2}}$. For simplifying the reset of the two terms, we can add their arguments to find a relation between the two. The relation will be obtained as \[\dfrac{\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12}\], on substituting which into the given expression, and using the trigonometric identity given by ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we will be able to find the final value of the given expression.
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
$\Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\dfrac{5\pi }{12}$
We know that
$\Rightarrow \cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Taking squares on both the sides, we get
$\begin{align}
& \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}=\dfrac{1}{2} \\
\end{align}$
Putting the above equation in the given expression, we get
\[\begin{align}
& \Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+\dfrac{1}{2}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12}......\left( i \right) \\
\end{align}\]
Now, let us add the two arguments of the cosine terms to get
\[\begin{align}
& \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12} \\
& \Rightarrow \dfrac{6\pi }{12} \\
& \Rightarrow \dfrac{\pi }{2} \\
\end{align}\]
This means we can write
$\Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}=\dfrac{\pi }{2}$
Subtracting $\dfrac{5\pi }{12}$ from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}-\dfrac{5\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\
& \Rightarrow \dfrac{\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\
\end{align}\]
Now, on substituting the above relation in (i) we get
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\left[ \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right) \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12}........\left( ii \right) \\
\end{align}\]
Now, we know that
\[\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \]
Substituting \[\theta =\dfrac{5\pi }{12}\] in the above identity, we get
\[\Rightarrow \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)=\sin \dfrac{5\pi }{12}\]
Putting the above identity in (ii) we get
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+{{\left[ \sin \dfrac{5\pi }{12} \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\sin }^{2}}\dfrac{5\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
\end{align}\]
Now, using the trigonometric identity given by ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can write the above expression as
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+1 \\
& \Rightarrow E=\dfrac{3}{2} \\
\end{align}\]
Thus, the value of the given trigonometric expression is found to be equal to \[\dfrac{3}{2}\].
Hence, the correct answer is option (c).
Note: We must remember all the important trigonometric identities for solving these types of questions. We can also use the trigonometric identity ${{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}$ on all the three terms to simplify the given expression as \[\dfrac{1}{2}\left[ \left( 1+\cos \dfrac{\pi }{6} \right)+\left( 1+\cos \dfrac{\pi }{2} \right)+\left( 1+\cos \dfrac{5\pi }{6} \right) \right]\]. Then, on substituting $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$, \[\cos \left( \dfrac{5\pi }{6} \right)=\dfrac{-\sqrt{3}}{2}\], and \[\cos \left( \dfrac{\pi }{2} \right)=0\], we will obtain the required value.
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
$\Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\dfrac{5\pi }{12}$
We know that
$\Rightarrow \cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Taking squares on both the sides, we get
$\begin{align}
& \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}=\dfrac{1}{2} \\
\end{align}$
Putting the above equation in the given expression, we get
\[\begin{align}
& \Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+\dfrac{1}{2}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12}......\left( i \right) \\
\end{align}\]
Now, let us add the two arguments of the cosine terms to get
\[\begin{align}
& \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12} \\
& \Rightarrow \dfrac{6\pi }{12} \\
& \Rightarrow \dfrac{\pi }{2} \\
\end{align}\]
This means we can write
$\Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}=\dfrac{\pi }{2}$
Subtracting $\dfrac{5\pi }{12}$ from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}-\dfrac{5\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\
& \Rightarrow \dfrac{\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\
\end{align}\]
Now, on substituting the above relation in (i) we get
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\left[ \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right) \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12}........\left( ii \right) \\
\end{align}\]
Now, we know that
\[\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \]
Substituting \[\theta =\dfrac{5\pi }{12}\] in the above identity, we get
\[\Rightarrow \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)=\sin \dfrac{5\pi }{12}\]
Putting the above identity in (ii) we get
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+{{\left[ \sin \dfrac{5\pi }{12} \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
& \Rightarrow E=\dfrac{1}{2}+{{\sin }^{2}}\dfrac{5\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12} \\
\end{align}\]
Now, using the trigonometric identity given by ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can write the above expression as
\[\begin{align}
& \Rightarrow E=\dfrac{1}{2}+1 \\
& \Rightarrow E=\dfrac{3}{2} \\
\end{align}\]
Thus, the value of the given trigonometric expression is found to be equal to \[\dfrac{3}{2}\].
Hence, the correct answer is option (c).
Note: We must remember all the important trigonometric identities for solving these types of questions. We can also use the trigonometric identity ${{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}$ on all the three terms to simplify the given expression as \[\dfrac{1}{2}\left[ \left( 1+\cos \dfrac{\pi }{6} \right)+\left( 1+\cos \dfrac{\pi }{2} \right)+\left( 1+\cos \dfrac{5\pi }{6} \right) \right]\]. Then, on substituting $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$, \[\cos \left( \dfrac{5\pi }{6} \right)=\dfrac{-\sqrt{3}}{2}\], and \[\cos \left( \dfrac{\pi }{2} \right)=0\], we will obtain the required value.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

