
The value of the definite integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx$ is?A. $\dfrac{\pi -2}{4}$B. $\dfrac{\pi -2}{8}$C. $\dfrac{\pi -1}{4}$D. $\dfrac{\pi -1}{2}$
Answer
512.7k+ views
Hint: To solve this integral, we should apply a property of the definite integrals. The property is $\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx$. Using this property in the integral, we get $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}\left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right)}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx$. By adding the two integrals $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx$ and $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx$ , we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x+{{\cos }^{3}}x}{\sin x+\cos x}}dx$. By using the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$, we can solve the integral.
Complete step-by-step answer:
Note: Students might commit mistakes by forgetting the value of 2 in $2I$ and get an answer as $I=\dfrac{\pi -1}{2}$. There is option-D which contains the wrong option. Students, without dividing by 2, opt for the option-D. To avoid this mistake, it is always a good practice to write both L.H.S and R.H.S in every step even while doing the rough work. This method of writing eliminates the error.
Complete step-by-step answer:
We are given the integral $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx$.
We know a formula in integration $\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx$.
Here in the question $a=0,b=\dfrac{\pi }{2}$, $f\left( x \right)=\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}$
By applying the formula, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}\left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right)}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx$
We got the two expressions for the integral I as
$ I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx\to \left( 1 \right) $
$ I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx\to \left( 2 \right) $
By adding equations 1 and 2, we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx$
As the limits of the two definite integrals are same, we can write the two integrals as a single integral
$\int\limits_{a}^{b}{f\left( x \right)dx+}\int\limits_{a}^{b}{g\left( x \right)dx=\int\limits_{a}^{b}{\left( f\left( x \right)+g\left( x \right) \right)}}dx$
Using this property, we get
$ 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{3}}x}{\sin x+\cos x}+\dfrac{{{\cos }^{3}}x}{\sin x+\cos x} \right)}dx $
$ 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x+{{\cos }^{3}}x}{\sin x+\cos x}dx} $
We know the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
By taking $a=\sin x,b=\cos x$, we can write the numerator in the integral as
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( \sin x+\cos x \right)\left( {{\sin }^{2}}x+{{\cos }^{2}}x-\sin x\cos x \right)}{\sin x+\cos x}dx}$
By cancelling $\sin x+\cos x$, we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x+{{\cos }^{2}}x-\sin x\cos x \right)dx}$
We know the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\sin x\times \cos x \right)dx}$
We know that
$ \sin 2x=2\sin x\times \cos x $
$ \dfrac{\sin 2x}{2}=\sin x\times \cos x $
The integral can be written as
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\dfrac{\sin 2x}{2} \right)dx}$
We know the integration formula $\int{\sin nxdx=\dfrac{-\cos nx}{n}}$
By integrating the function inside the integral, we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\dfrac{\sin 2x}{2} \right)dx}=\left[ x-\left( -\dfrac{\cos 2x}{2\times 2} \right) \right]_{0}^{\dfrac{\pi }{2}}=\left[ x+\dfrac{\cos 2x}{4} \right]_{0}^{\dfrac{\pi }{2}}$
By applying the limits, we get
$2I=\left( \dfrac{\pi }{2}+\dfrac{\cos 2\times \dfrac{\pi }{2}}{4} \right)-\left( 0+\dfrac{\cos 2\times 0}{4} \right)=\dfrac{\pi }{2}+\dfrac{-1}{4}-\dfrac{1}{4}=\dfrac{\pi }{2}-\dfrac{1}{2}=\dfrac{\pi -1}{2}$
Dividing by 2, we get
$I=\dfrac{\pi -1}{4}$
$\therefore $ The value of the integral $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\dfrac{\pi -1}{4}$.
Hence, the correct answer is option (C).
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
