
The value of the angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees is equal to
(a) $ -{{20}^{\circ }} $
(b) $ {{20}^{\circ }} $
(c) $ {{25}^{\circ }} $
(d) $ {{40}^{\circ }} $
Answer
566.4k+ views
Hint: We start solving the problem by assigning the variable for $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ . We then make use of the fact $ \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ by assuming suitable values for angles A and B. We then make the necessary calculations and make use of the facts $ \tan \left( 90-\theta \right)=\cot \theta $ and $ \tan \theta \times \cot \theta =1 $ to proceed through the problem. We the make the necessary calculations and use the fact $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the value of angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees.
Let us assume $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-2\tan {{40}^{\circ }} $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} $ ---(1).
We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $ .
$ \Rightarrow \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ . Let us make use of this result in equation (1) by assuming $ A={{65}^{\circ }} $ and $ B={{40}^{\circ }} $ .
\[\Rightarrow \tan \alpha =\left( \tan \left( {{65}^{\circ }}-{{40}^{\circ }} \right) \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\left( \tan {{25}^{\circ }} \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{25}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan \left( {{90}^{\circ }}-{{65}^{\circ }} \right)\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \left( 90-\theta \right)=\cot \theta $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\cot {{65}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \theta \times \cot \theta =1 $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\left( 1\times \tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}\].
\[\Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right)\].
We know that $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ .
\[\Rightarrow \alpha ={{25}^{\circ }}\].
But we already have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right)={{25}^{\circ }} $ .
So, we have found the value of $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ as $ {{25}^{\circ }} $ .
$ \therefore, $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} \right) $ ---(2).
Now, let us solve $ \tan {{65}^{\circ }}-\tan {{40}^{\circ }} $ . We know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}}{\cos {{65}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}\cos {{40}^{\circ }}-\sin {{40}^{\circ }}\cos {{65}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
We know that $ \sin A\cos B-\cos A\sin B=\sin \left( A-B \right) $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin \left( {{65}^{\circ }}-{{40}^{\circ }} \right)}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\cos {{40}^{\circ }}}\].
We know that $ \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\sin {{25}^{\circ }}\cos {{40}^{\circ }}}\].
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{1}{\cos {{40}^{\circ }}}\] ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
We know that $ {{\sin }^{2}}A+{{\cos }^{2}}A=1 $ , $ \sin 2A=2\sin A\cos A $ and $ \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}-2\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{{{\cos }^{2}}{{20}^{\circ }}-{{\sin }^{2}}{{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)}^{2}}}{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)\left( \cos {{20}^{\circ }}+\sin {{20}^{\circ }} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}-\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}+\sin {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}\left( 1-\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)}{\cos {{20}^{\circ }}\left( 1+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\tan {{20}^{\circ }}}{1+\tan {{20}^{\circ }}} \right) $ .
We know that $ \tan {{45}^{\circ }}=1 $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\tan {{45}^{\circ }}-\tan {{20}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-{{20}^{\circ }} \right) \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{25}^{\circ }} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees.
Let us assume $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-2\tan {{40}^{\circ }} $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} $ ---(1).
We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $ .
$ \Rightarrow \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ . Let us make use of this result in equation (1) by assuming $ A={{65}^{\circ }} $ and $ B={{40}^{\circ }} $ .
\[\Rightarrow \tan \alpha =\left( \tan \left( {{65}^{\circ }}-{{40}^{\circ }} \right) \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\left( \tan {{25}^{\circ }} \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{25}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan \left( {{90}^{\circ }}-{{65}^{\circ }} \right)\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \left( 90-\theta \right)=\cot \theta $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\cot {{65}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \theta \times \cot \theta =1 $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\left( 1\times \tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}\].
\[\Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right)\].
We know that $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ .
\[\Rightarrow \alpha ={{25}^{\circ }}\].
But we already have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right)={{25}^{\circ }} $ .
So, we have found the value of $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ as $ {{25}^{\circ }} $ .
$ \therefore, $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} \right) $ ---(2).
Now, let us solve $ \tan {{65}^{\circ }}-\tan {{40}^{\circ }} $ . We know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}}{\cos {{65}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}\cos {{40}^{\circ }}-\sin {{40}^{\circ }}\cos {{65}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
We know that $ \sin A\cos B-\cos A\sin B=\sin \left( A-B \right) $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin \left( {{65}^{\circ }}-{{40}^{\circ }} \right)}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\cos {{40}^{\circ }}}\].
We know that $ \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\sin {{25}^{\circ }}\cos {{40}^{\circ }}}\].
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{1}{\cos {{40}^{\circ }}}\] ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
We know that $ {{\sin }^{2}}A+{{\cos }^{2}}A=1 $ , $ \sin 2A=2\sin A\cos A $ and $ \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}-2\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{{{\cos }^{2}}{{20}^{\circ }}-{{\sin }^{2}}{{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)}^{2}}}{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)\left( \cos {{20}^{\circ }}+\sin {{20}^{\circ }} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}-\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}+\sin {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}\left( 1-\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)}{\cos {{20}^{\circ }}\left( 1+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\tan {{20}^{\circ }}}{1+\tan {{20}^{\circ }}} \right) $ .
We know that $ \tan {{45}^{\circ }}=1 $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\tan {{45}^{\circ }}-\tan {{20}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-{{20}^{\circ }} \right) \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{25}^{\circ }} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

