
The value of the angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees is equal to
(a) $ -{{20}^{\circ }} $
(b) $ {{20}^{\circ }} $
(c) $ {{25}^{\circ }} $
(d) $ {{40}^{\circ }} $
Answer
554.7k+ views
Hint: We start solving the problem by assigning the variable for $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ . We then make use of the fact $ \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ by assuming suitable values for angles A and B. We then make the necessary calculations and make use of the facts $ \tan \left( 90-\theta \right)=\cot \theta $ and $ \tan \theta \times \cot \theta =1 $ to proceed through the problem. We the make the necessary calculations and use the fact $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the value of angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees.
Let us assume $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-2\tan {{40}^{\circ }} $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} $ ---(1).
We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $ .
$ \Rightarrow \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ . Let us make use of this result in equation (1) by assuming $ A={{65}^{\circ }} $ and $ B={{40}^{\circ }} $ .
\[\Rightarrow \tan \alpha =\left( \tan \left( {{65}^{\circ }}-{{40}^{\circ }} \right) \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\left( \tan {{25}^{\circ }} \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{25}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan \left( {{90}^{\circ }}-{{65}^{\circ }} \right)\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \left( 90-\theta \right)=\cot \theta $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\cot {{65}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \theta \times \cot \theta =1 $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\left( 1\times \tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}\].
\[\Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right)\].
We know that $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ .
\[\Rightarrow \alpha ={{25}^{\circ }}\].
But we already have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right)={{25}^{\circ }} $ .
So, we have found the value of $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ as $ {{25}^{\circ }} $ .
$ \therefore, $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} \right) $ ---(2).
Now, let us solve $ \tan {{65}^{\circ }}-\tan {{40}^{\circ }} $ . We know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}}{\cos {{65}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}\cos {{40}^{\circ }}-\sin {{40}^{\circ }}\cos {{65}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
We know that $ \sin A\cos B-\cos A\sin B=\sin \left( A-B \right) $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin \left( {{65}^{\circ }}-{{40}^{\circ }} \right)}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\cos {{40}^{\circ }}}\].
We know that $ \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\sin {{25}^{\circ }}\cos {{40}^{\circ }}}\].
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{1}{\cos {{40}^{\circ }}}\] ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
We know that $ {{\sin }^{2}}A+{{\cos }^{2}}A=1 $ , $ \sin 2A=2\sin A\cos A $ and $ \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}-2\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{{{\cos }^{2}}{{20}^{\circ }}-{{\sin }^{2}}{{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)}^{2}}}{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)\left( \cos {{20}^{\circ }}+\sin {{20}^{\circ }} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}-\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}+\sin {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}\left( 1-\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)}{\cos {{20}^{\circ }}\left( 1+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\tan {{20}^{\circ }}}{1+\tan {{20}^{\circ }}} \right) $ .
We know that $ \tan {{45}^{\circ }}=1 $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\tan {{45}^{\circ }}-\tan {{20}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-{{20}^{\circ }} \right) \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{25}^{\circ }} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of angle $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ in degrees.
Let us assume $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-2\tan {{40}^{\circ }} $ .
$ \Rightarrow \tan \alpha =\tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} $ ---(1).
We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} $ .
$ \Rightarrow \left( \tan \left( A-B \right) \right)\times \left( 1+\tan A\tan B \right)=\tan A-\tan B $ . Let us make use of this result in equation (1) by assuming $ A={{65}^{\circ }} $ and $ B={{40}^{\circ }} $ .
\[\Rightarrow \tan \alpha =\left( \tan \left( {{65}^{\circ }}-{{40}^{\circ }} \right) \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\left( \tan {{25}^{\circ }} \right)\times \left( 1+\tan {{65}^{\circ }}\tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{25}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan \left( {{90}^{\circ }}-{{65}^{\circ }} \right)\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \left( 90-\theta \right)=\cot \theta $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\cot {{65}^{\circ }}\tan {{65}^{\circ }}\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
We know that $ \tan \theta \times \cot \theta =1 $ .
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\left( 1\times \tan {{40}^{\circ }} \right)-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}+\tan {{40}^{\circ }}-\tan {{40}^{\circ }}\].
\[\Rightarrow \tan \alpha =\tan {{25}^{\circ }}\].
\[\Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right)\].
We know that $ {{\tan }^{-1}}\left( \tan \theta \right)=\theta $ , if $ \theta \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) $ .
\[\Rightarrow \alpha ={{25}^{\circ }}\].
But we already have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right)={{25}^{\circ }} $ .
So, we have found the value of $ {{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ as $ {{25}^{\circ }} $ .
$ \therefore, $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We have $ \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-2\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{65}^{\circ }}-\tan {{40}^{\circ }}-\tan {{40}^{\circ }} \right) $ ---(2).
Now, let us solve $ \tan {{65}^{\circ }}-\tan {{40}^{\circ }} $ . We know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}}{\cos {{65}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{65}^{\circ }}\cos {{40}^{\circ }}-\sin {{40}^{\circ }}\cos {{65}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
We know that $ \sin A\cos B-\cos A\sin B=\sin \left( A-B \right) $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin \left( {{65}^{\circ }}-{{40}^{\circ }} \right)}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
$ \Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos {{65}^{\circ }}\cos {{40}^{\circ }}} $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\cos \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\cos {{40}^{\circ }}}\].
We know that $ \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ .
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{\sin {{25}^{\circ }}}{\sin {{25}^{\circ }}\cos {{40}^{\circ }}}\].
\[\Rightarrow \tan {{65}^{\circ }}-\tan {{40}^{\circ }}=\dfrac{1}{\cos {{40}^{\circ }}}\] ---(3).
Let us substitute equation (3) in equation (2).
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\tan {{40}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1}{\cos {{40}^{\circ }}}-\dfrac{\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\sin {{40}^{\circ }}}{\cos {{40}^{\circ }}} \right) $ .
We know that $ {{\sin }^{2}}A+{{\cos }^{2}}A=1 $ , $ \sin 2A=2\sin A\cos A $ and $ \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}-2\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{{{\cos }^{2}}{{20}^{\circ }}-{{\sin }^{2}}{{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{{{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)}^{2}}}{\left( \cos {{20}^{\circ }}-\sin {{20}^{\circ }} \right)\left( \cos {{20}^{\circ }}+\sin {{20}^{\circ }} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}-\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}+\sin {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\cos {{20}^{\circ }}\left( 1-\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)}{\cos {{20}^{\circ }}\left( 1+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}} \right)} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{1-\tan {{20}^{\circ }}}{1+\tan {{20}^{\circ }}} \right) $ .
We know that $ \tan {{45}^{\circ }}=1 $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{\tan {{45}^{\circ }}-\tan {{20}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{20}^{\circ }}} \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan \left( {{45}^{\circ }}-{{20}^{\circ }} \right) \right) $ .
$ \Rightarrow \alpha ={{\tan }^{-1}}\left( \tan {{25}^{\circ }} \right) $ .
$ \Rightarrow \alpha ={{25}^{\circ }} $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

