
The value of \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\] is:
a). $\cot \dfrac{\pi }{5}$
b). $\cot \dfrac{2\pi }{5}$
c). $\cot \dfrac{4\pi }{5}$
d). $\cos \dfrac{3\pi }{5}$
Answer
563.4k+ views
Hint: To solve the above question we will replace tangent function by the ratio of the sine to the cosine function and cot by the ratio of cosine to sine function. Then, we will us the trigonometric properties like $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $, $\sin 2\theta =2\sin \theta \cos \theta $etc. and then solve them to get the simplified form as given in the options.
Complete step by step answer:
Since, we have to find the value of \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\].
We will start solving the above question just by replacing tangent function by the ratio of the sine to the cosine function and cot by the ratio of cosine to sine function (i.e. $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$) .
So, we will write \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\] as the function of sine and cosine function.
Let’s take it as A.
\[A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\dfrac{\cos \dfrac{4\pi }{5}}{\sin \dfrac{4\pi }{5}}\]
Now, we will write use the property $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ and $\sin 2\theta =2\sin \theta \cos \theta $
We will write $\cos \dfrac{4\pi }{5}$ as ${{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5}$ and $\sin \dfrac{4\pi }{5}$ as $2\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}$ , then we will get:
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\times \dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{2\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+2\dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}\]
Now, after take LCM we will get:
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\sin }^{2}}\dfrac{2\pi }{5}+2{{\cos }^{2}}\dfrac{2\pi }{5}-2{{\sin }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\cos }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\cos \dfrac{2\pi }{5}}{\sin \dfrac{2\pi }{5}}\]
Now, we will again use the property $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ and $\sin 2\theta =2\sin \theta \cos \theta $ , to write $\cos \dfrac{2\pi }{5}$ as ${{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5}$ and $\sin \dfrac{2\pi }{5}$ as $2\sin \dfrac{\pi }{5}\cos \dfrac{\pi }{5}$.
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\left( {{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5} \right)}{2\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
Now, again after taking LCM, we will get:
\[\Rightarrow A=\dfrac{{{\sin }^{2}}\dfrac{\pi }{5}+{{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
\[\Rightarrow A=\dfrac{{{\cos }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
After cancelling $\cos \dfrac{\pi }{5}$ from numerator and denominator we will get:
\[\Rightarrow A=\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}}\]
Since, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$, so we can write \[\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}}\] as $\cot \dfrac{\pi }{5}$ .
So, the correct answer is “Option b”.
Note: Students are required to memorize all the formula and whenever they have been given a question which contains tangent functions, they should convert it into a sine and cosine function. It will always make our calculation easier and we can easily solve them by using different properties of trigonometry.
Complete step by step answer:
Since, we have to find the value of \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\].
We will start solving the above question just by replacing tangent function by the ratio of the sine to the cosine function and cot by the ratio of cosine to sine function (i.e. $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$) .
So, we will write \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\] as the function of sine and cosine function.
Let’s take it as A.
\[A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\dfrac{\cos \dfrac{4\pi }{5}}{\sin \dfrac{4\pi }{5}}\]
Now, we will write use the property $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ and $\sin 2\theta =2\sin \theta \cos \theta $
We will write $\cos \dfrac{4\pi }{5}$ as ${{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5}$ and $\sin \dfrac{4\pi }{5}$ as $2\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}$ , then we will get:
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\times \dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{2\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+2\dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}\]
Now, after take LCM we will get:
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\sin }^{2}}\dfrac{2\pi }{5}+2{{\cos }^{2}}\dfrac{2\pi }{5}-2{{\sin }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\cos }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}\]
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\cos \dfrac{2\pi }{5}}{\sin \dfrac{2\pi }{5}}\]
Now, we will again use the property $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ and $\sin 2\theta =2\sin \theta \cos \theta $ , to write $\cos \dfrac{2\pi }{5}$ as ${{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5}$ and $\sin \dfrac{2\pi }{5}$ as $2\sin \dfrac{\pi }{5}\cos \dfrac{\pi }{5}$.
\[\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\left( {{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5} \right)}{2\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
Now, again after taking LCM, we will get:
\[\Rightarrow A=\dfrac{{{\sin }^{2}}\dfrac{\pi }{5}+{{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
\[\Rightarrow A=\dfrac{{{\cos }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}\]
After cancelling $\cos \dfrac{\pi }{5}$ from numerator and denominator we will get:
\[\Rightarrow A=\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}}\]
Since, we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$, so we can write \[\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}}\] as $\cot \dfrac{\pi }{5}$ .
So, the correct answer is “Option b”.
Note: Students are required to memorize all the formula and whenever they have been given a question which contains tangent functions, they should convert it into a sine and cosine function. It will always make our calculation easier and we can easily solve them by using different properties of trigonometry.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

