
The value of $\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$ is equal to
(A) -1
(B) 0
(C) 1
(D) 4
Answer
574.8k+ views
Hint: To find the value of a given expression we will rearrange the expression. Then we will use the trigonometric identity to rewrite the expression in the form $\cot $. Then we will again rewrite the expression in terms of sine and cosine. By again using the trigonometric identity we resolve the problem in a simpler form of sine and cosine. To convert the equation in the form of $\sin 2\theta $ we will multiply and divide the expression by 2. Then we will use the predefined formulas to get the answer.
Formula used:
We are using following trigonometric formulas:
1.$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
2.${\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta $
3.${\cos ^2}\theta + {\sin ^2}\theta = 1$
4. $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $
Complete step-by-step answer:
We have given expressions as$\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$.
We will rearrange the given expression as:
$ = \tan {9^ \circ } + \tan {81^ \circ } - \tan {27^ \circ } - \tan {63^ \circ }$
Then we will substitute ${81^ \circ }$ by $\left( {{{90}^ \circ } - {9^ \circ }} \right)$ and ${63^ \circ }$ by $\left( {{{90}^ \circ } - {{27}^ \circ }} \right)$. We will get,
$ = \tan {9^ \circ } + \tan \left( {{{90}^ \circ } - {9^ \circ }} \right) - \tan {27^ \circ } - \tan \left( {{{90}^ \circ } - {{27}^ \circ }} \right)$
We know that $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $. Hence using this expression in the above expression as:
$ = \tan {9^ \circ } + \cot {9^ \circ } - \tan {27^ \circ } + \cot {27^ \circ }$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . hence using these expression, we can rewrite the above expression as:
\[\begin{array}{l}
= \dfrac{{\sin {9^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}} - \dfrac{{\sin {{27}^ \circ }}}{{\cos {{27}^ \circ }}} - \dfrac{{\cos {{27}^ \circ }}}{{\sin {{27}^ \circ }}}\\
= \dfrac{{{{\sin }^2}{9^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{{{{\sin }^2}{{27}^ \circ } + {{\cos }^2}{{27}^ \circ }}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}
\end{array}\]
We will use trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ to rewrite the above expression:
\[ = \dfrac{1}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{1}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}\]
We multiply and divide the above expression by 2, we will get
\[ = \dfrac{2}{{2\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{2}{{2\sin {{27}^ \circ }\cos {{27}^ \circ }}}\]
Now we know that ${\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta $ , using this expression we will get
\[ = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\sin {{54}^ \circ }}}\]
We will substitute $\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$ in the above expression.
\[\begin{array}{l}
= \dfrac{{2 \times 4}}{{\sqrt 5 - 1}} - \dfrac{{2 \times 4}}{{\sqrt 5 + 1}}\\
= 4
\end{array}\]
Hence the value of $\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$ is equal to 4 and option (4) is correct.
So, the correct answer is “Option D”.
Note: In this question we are using predefined formulas and identities and hence we should have prior knowledge about the identities. The expression$\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$is derived in the trigonometry and hence we need to remember its value. Since, deduction of these values is a separate question.
Formula used:
We are using following trigonometric formulas:
1.$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
2.${\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta $
3.${\cos ^2}\theta + {\sin ^2}\theta = 1$
4. $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $
Complete step-by-step answer:
We have given expressions as$\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$.
We will rearrange the given expression as:
$ = \tan {9^ \circ } + \tan {81^ \circ } - \tan {27^ \circ } - \tan {63^ \circ }$
Then we will substitute ${81^ \circ }$ by $\left( {{{90}^ \circ } - {9^ \circ }} \right)$ and ${63^ \circ }$ by $\left( {{{90}^ \circ } - {{27}^ \circ }} \right)$. We will get,
$ = \tan {9^ \circ } + \tan \left( {{{90}^ \circ } - {9^ \circ }} \right) - \tan {27^ \circ } - \tan \left( {{{90}^ \circ } - {{27}^ \circ }} \right)$
We know that $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $. Hence using this expression in the above expression as:
$ = \tan {9^ \circ } + \cot {9^ \circ } - \tan {27^ \circ } + \cot {27^ \circ }$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . hence using these expression, we can rewrite the above expression as:
\[\begin{array}{l}
= \dfrac{{\sin {9^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}} - \dfrac{{\sin {{27}^ \circ }}}{{\cos {{27}^ \circ }}} - \dfrac{{\cos {{27}^ \circ }}}{{\sin {{27}^ \circ }}}\\
= \dfrac{{{{\sin }^2}{9^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{{{{\sin }^2}{{27}^ \circ } + {{\cos }^2}{{27}^ \circ }}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}
\end{array}\]
We will use trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ to rewrite the above expression:
\[ = \dfrac{1}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{1}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}\]
We multiply and divide the above expression by 2, we will get
\[ = \dfrac{2}{{2\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{2}{{2\sin {{27}^ \circ }\cos {{27}^ \circ }}}\]
Now we know that ${\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta $ , using this expression we will get
\[ = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\sin {{54}^ \circ }}}\]
We will substitute $\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$ in the above expression.
\[\begin{array}{l}
= \dfrac{{2 \times 4}}{{\sqrt 5 - 1}} - \dfrac{{2 \times 4}}{{\sqrt 5 + 1}}\\
= 4
\end{array}\]
Hence the value of $\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$ is equal to 4 and option (4) is correct.
So, the correct answer is “Option D”.
Note: In this question we are using predefined formulas and identities and hence we should have prior knowledge about the identities. The expression$\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$is derived in the trigonometry and hence we need to remember its value. Since, deduction of these values is a separate question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

