
The value of $\tan 7x\tan 3x\tan 4x\, = $
$\left( A \right)\,\tan 7x - \tan 3x - \tan 4x$
$\left( B \right)\,\dfrac{{\sin 7x - \tan 3x - \sin 4x}}{{\cos 7x - \cos 3x - \cos 4x}}$
$\left( C \right)\,0$
$\left( D \right)\,None\,of\,these$
Answer
497.1k+ views
Hint: Trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. Formula used: $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
In the given question,
We know that
$7x = 3x + 4x$
Taking tan both sides
$\tan \left( {7x} \right) = \tan \left( {3x + 4x} \right)$
Using formula,$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$\tan \left( {7x} \right) = \dfrac{{\tan \left( {3x} \right) + \tan \left( {4x} \right)}}{{1 - \tan \left( {3x} \right)\tan \left( {4x} \right)}}$
On cross multiplication, we get
$\tan 7x\left( {1 - \tan 3x\tan 4x} \right) = \tan 3x + \tan 4x$
Now, multiplying in L.H.S
$\tan 7x - \tan 7x\tan 3x\tan 4x = \tan 3x + \tan 4x$
On transposing, we get
$\tan 7x - \tan 3x - \tan 4x = \tan 7x\tan 3x\tan 4x$
Therefore, the required answer is $\tan 7x - \tan 3x - \tan 4x.$
So, the correct answer is “Option a”.
Note: The domain of the function y=tan(x) ) is all real numbers except the values where cos(x) is equal to 0 , that is, the values π2+πn for all integers n . The range of the tangent function is all real numbers.
Complete step-by-step answer:
In the given question,
We know that
$7x = 3x + 4x$
Taking tan both sides
$\tan \left( {7x} \right) = \tan \left( {3x + 4x} \right)$
Using formula,$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$\tan \left( {7x} \right) = \dfrac{{\tan \left( {3x} \right) + \tan \left( {4x} \right)}}{{1 - \tan \left( {3x} \right)\tan \left( {4x} \right)}}$
On cross multiplication, we get
$\tan 7x\left( {1 - \tan 3x\tan 4x} \right) = \tan 3x + \tan 4x$
Now, multiplying in L.H.S
$\tan 7x - \tan 7x\tan 3x\tan 4x = \tan 3x + \tan 4x$
On transposing, we get
$\tan 7x - \tan 3x - \tan 4x = \tan 7x\tan 3x\tan 4x$
Therefore, the required answer is $\tan 7x - \tan 3x - \tan 4x.$
So, the correct answer is “Option a”.
Note: The domain of the function y=tan(x) ) is all real numbers except the values where cos(x) is equal to 0 , that is, the values π2+πn for all integers n . The range of the tangent function is all real numbers.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

